We are currently developing a novel gas embolotherapy technique that involves the selective, acoustic vaporization of liquid perfluorocarbon droplets in or near a tumor as a possible treatment for cancer. The resulting bubbles can then stick within the tumor vasculature to occlude blood flow and “starve” the tumor. The potential development of high stresses during droplet vaporization is a major concern for safe implementation of this technique. No prior study, either experimentally or theoretically, addresses this important issue. In this work, the acoustic vaporization procedure of the therapy is investigated by direct numerical simulations. The nonlinear, multiphase, computational model is comprised of an ideal gas bubble surrounded by liquid inside a long tube. Convective and unsteady inertia, viscosity, and surface tension affect the bubble dynamics and are included in this model, which is solved by a novel fixed-grid, sharp-interface, moving boundary method. We assess the potential for flow-induced wall stresses to rupture the vessel or damage the endothelium during vaporization under a range of operating conditions by varying dimensionless parameters—Reynolds, Weber, and Strouhal numbers, inertial energy and initial droplet size. It is found that the wall pressure is typically highest at the start of the bubble expansion, but the maximum wall shear stress occurs at a later time. Smaller initial bubble diameters, relative to the vessel diameter, result in lower wall stresses.

1.
Di Segni, R., Young, A. T., Zhong, Q., and Castaneda-Zuniga, W. R., 1997, “Embolotherapy: Agents, Equipment, and Techniques,” in Interventional Radiology, W. R. Castaneda-Zuniga, ed., Williams and Wilkins, Baltimore, pp. 81–84.
2.
Lussenhop
,
A. J.
, and
Spence
,
W. T.
,
1960
, “
Artificial Embolization of Cerebral Arteries: Report of Use in a Case of Arteriovenous Malformation
,”
JAMA, J. Am. Med. Assoc.
,
172
, pp.
1153
1155
.
3.
Serbinenko, F., 1974, Balloon Occlusion of Saccular Aneurysms of the Cerebral Arteries. Voprosy Neirokhirurgii.
4.
Boehm
,
T.
,
Folkman
,
J.
,
Browder
,
T.
, and
O’Reilly
,
M. S.
,
1997
, “
Antiangiogenic Therapy of Experimental Cancer Does Not Induce Acquired Drug Resistance
,”
Nature (London)
,
390
, pp.
404
407
.
5.
Laccourreye
,
O.
,
Laurent
,
A.
,
Polivka
,
M.
,
Wassef
,
M.
,
Domas
,
L.
,
Grasnu
,
D.
, and
Merland
,
J.
,
1993
, “
Biodegradable Starch Microspheres for Cerebral Arterial Embolization
,”
Invest. Radiol.
,
28
, pp.
150
154
.
6.
Nakagawa, N., and Castaneda-Zuniga, W. R., 1997, “Transcatheter Chemoembolization for Hepatocellular Carcinoma and Other Promising Transarterial Therapies,” in Interventional Radiology, W. R. Castaneda-Zuniga, ed., Williams and Wilkins, Baltimore.
7.
Kripfgans
,
O. D.
,
Fowlkes
,
J. B.
,
Woydt
,
M.
,
Eldevik
,
O. P.
, and
Carson
,
P. L.
,
2002
, “
In Vivo Droplet Vaporization for Occlusion Therapy and Phase Aberration Correction
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
49
, pp.
726
738
.
8.
Kripfgans
,
O. D.
,
Fowlkes
,
J. B.
,
Miller
,
D. L.
,
Eldevik
,
O. P.
, and
Carson
,
P. L.
,
2000
, “
Acoustic Droplet Vaporization for Therapeutic and Diagnostic Applications
,”
Ultrasound Med. Biol.
,
26
(
7
), pp.
1177
1189
.
9.
Linka
,
A. Z.
,
Skalak
,
T. C.
,
Skyba
,
D. M.
,
Price
,
R. J.
, and
Kaul
,
S.
,
1998
, “
Direct in Vivo Visualization of Intravascular Destruction of Microbubbles by Ultrasound and Its Local Effects on Tissue
,”
Circulation
,
98
, pp.
290
293
.
10.
Qi
,
M.
,
VanGieson
,
E. J.
,
Kaul
,
S.
,
Song
,
J.
,
Chappell
,
J. C.
, and
Price
,
R. J.
,
2002
, “
Influence of Injection Site, Microvascular Pressure and Ultrasound Variables on Microbubble-Mediated Delivery of Microspheres to Muscle
,”
J. Am. Coll. Cardiol.
,
39
, pp.
726
731
.
11.
Van Camp
,
G.
,
Campanelli
,
B.
,
Gisellu
,
G.
,
Pasquet
,
A.
,
Denef
,
J. F.
,
Melin
,
J. A.
,
Ay
,
T.
,
Havaux
,
X.
, and
Vanocershelde
,
J. L. J.
,
2001
, “
Destruction of Contrast Microbubbles by Ultrasound-Effects on Myocardial Function, Coronary Perfusion Pressure, and Microvascular Integrity
,”
Circulation
,
104
, pp.
461
466
.
12.
Miller
,
D. L.
, and
Quddus
,
J.
,
2000
, “
Diagnostic Ultrasound Activation of Contrast Agent Gas Bodies Induces Capillary Rupture in Mice
,”
Proc. Natl. Acad. Sci. U.S.A.
,
97
, pp.
10179
10184
.
13.
Kaul
,
S.
,
Song
,
J.
,
Qi
,
M.
, and
Price
,
R. J.
,
2002
, “
Stimulation of Arteriogenesis in Skeletal Muscle by Microbubble Destruction With Ultrasound
,”
Circulation
,
106
, pp.
1550
1555
.
14.
Lelkes, P. I., 1999, Mechanical Forces and the Endothelium, Harwood, Amsterdam.
15.
Cornhill
,
J. F.
,
Levesque
,
M. J.
,
Herderick
,
E. E.
,
Nerem
,
R. M.
,
Kilman
,
J. W.
, and
Vasko
,
J. S.
,
1980
, “
Quantitative Study of the Rabbit Aortic Endothelium Using Vascular Casts
,”
Atherosclerosis
,
35
, pp.
321
337
.
16.
Dewey
, Jr.,
C. F.
,
Bussolari
,
S. R.
,
Gimbrone
, Jr.,
M. A.
, and
Davies
,
P. F.
,
1981
, “
The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress
,”
ASME J. Biomech. Eng.
,
103
, pp.
177
185
.
17.
Nerem
,
R. M.
,
Levesque
,
M. J.
, and
Cornhill
,
J. F.
,
1981
, “
Vascular Endothelial Morphology as an Indicator of Blood Flow
,”
ASME J. Biomech. Eng.
,
103
, pp.
172
176
.
18.
Levesque
,
M. J.
, and
Nerem
,
R. M.
,
1985
, “
The Elongation and Orientation of Cultured Endothelial Cells in Response to Shear Stress
,”
ASME J. Biomech. Eng.
,
107
, pp.
341
347
.
19.
Nerem
,
R. M.
,
1992
, “
Vascular Fluid Mechanics, the Arterial Wall, and Atherosclerosis
,”
ASME J. Biomech. Eng.
,
114
, pp.
274
282
.
20.
Nerem
,
R. M.
,
Harrison
,
D. G.
,
Taylor
,
W. R.
, and
Alexander
,
R. W.
,
1993
, “
Hemodynamics and Vascular Endothelial Biology
,”
J. Cardiovasc. Pharmacol.
,
21
, pp.
6
10
.
21.
Franke
,
R. P.
,
Grafe
,
M.
,
Schnittler
,
H.
,
Seiffge
,
D.
,
Mittermayer
,
C.
, and
Drenckhahn
,
D.
,
1984
, “
Induction of Human Vascular Endothelial Stress Fibers by Fluid Shear Stress
,”
Nature (London)
,
307
, pp.
648
649
.
22.
Kim
,
D. W.
,
Gotlieb
,
A. I.
, and
Langille
,
B. L.
,
1989
, “
In Vivo Modulation of Endothelial f-Action Microfilaments by Experimental Alterations in Shear Stress
,”
Atherosclerosis
,
9
, pp.
439
445
.
23.
Ookawa
,
K.
,
Sato
,
M.
, and
Ohshima
,
N.
,
1992
, “
Changes in the Microstructure of Cultured Porcine Aortic Endothelial Cell in the Early Stage After Applying a Fluid-Imposed Shear Stress
,”
ASME J. Biomech. Eng.
,
114
, pp.
274
282
.
24.
Olesen
,
S. P.
,
Clapham
,
D. E.
, and
Davies
,
P. F.
,
1988
, “
Hemodynamic Shear Stress Activates a k Current in Vascular Endothelial Cells
,”
Nature (London)
,
331
, pp.
168
170
.
25.
Davies
,
P. F.
,
Robotewskyj
,
A.
,
Griem
,
M. L.
,
Dull
,
R. O.
, and
Polacek
,
D. C.
,
1992
, “
Hemodynamics Forces and Vascular Cell Communication in Arteries
,”
Arch. Pathol. Lab Med.
,
116
, pp.
1301
1306
.
26.
Davies
,
P. F.
, and
Tripathi
,
S. C.
,
1993
, “
Mechanical Stress Mechanisms and the Cell: an Endothelial Paradigm
,”
Circ. Res.
,
72
, pp.
239
245
.
27.
Nollert
,
M. N.
,
Diamond
,
S. L.
, and
McIntire
,
L. V.
,
1991
, “
Hydrodynamic Shear Stress and Mass Transport Modulation of Endothelial Cell Metabolism
,”
Biotechnol. Bioeng.
,
38
, pp.
588
602
.
28.
Shyy
,
Y. J.
,
Hsieh
,
H. J.
,
Usami
,
S.
, and
Chien
,
S.
,
1994
, “
Fluid Shear Stress Induces a Biphasic Response of Human Monocyte Chemotactic Protein 1 Gene Expression in Vascular Endothelium
,”
Proc. Natl. Acad. Sci. U.S.A.
,
91
, pp.
4678
4682
.
29.
Chiu
,
J. J.
,
Wang
,
D. L.
,
Chien
,
S.
,
Skalak
,
R.
, and
Usami
,
S.
,
1998
, “
Effects of Disturbed Flows on Endothelial Cells
,”
J. Biomech. Eng.
,
120
, pp.
2
8
.
30.
Dayton
,
P. A.
,
Morgan
,
K. E.
,
Klibanov
,
A. L.
,
Brandenburger
,
G. H.
, and
Ferrara
,
K. W.
,
1999
, “
Opical and Acoustical Observations of the Effects of Ultrasound on Contrast Agents
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
46
(
1
), pp.
220
232
.
31.
Patel
,
D.
,
Dayton
,
P. A.
,
Gut
,
J.
,
Wisner
,
E.
, and
Ferrara
,
K. W.
,
2002
, “
Opical and Acoustical Interrogation of Submicron Contrast Agents
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
49
(
12
), pp.
1641
1651
.
32.
Allen
,
J. S.
,
Kruse
,
D. E.
,
Dayton
,
P. A.
, and
Ferraraa
,
K. W.
,
2003
, “
Effect of Coupled Oscillations on Microbubble Behavior
,”
J. Acoust. Soc. Am.
,
114
(
3
), pp.
1678
1690
.
33.
Bloch
,
S. H.
,
Wan
,
M.
,
Dayton
,
P. A.
, and
Ferrara
,
K. W.
,
2004
, “
Optical Observation of Lipid- and Polymer-Shelled Ultrasound Microbubble Contrast Agents
,”
Appl. Phys. Lett.
,
84
(
4
), pp.
631
633
.
34.
Brujan
,
E. A.
,
Keen
,
G. S.
,
Vogel
,
A.
, and
Blake
,
J. R.
,
2002
, “
The Final Stage of the Collapse of a Cavitation Bubble Close to a Rigid Boundary
,”
Phys. Fluids
,
14
, pp.
85
92
.
35.
Tong
,
R. P.
,
Schiffers
,
W. P.
,
Shaw
,
S. J.
,
Blake
,
J. R.
, and
Emmony
,
D. C.
,
1999
, “
The Role of ‘Splashing’ in the Collapse of a Laser-Generated Cavity Near a Rigid Boundary
,”
J. Fluid Mech.
,
380
, pp.
339
361
.
36.
Geng
,
X.
,
Yuan
,
H.
,
Oguz
,
H. N.
, and
Prosperetti
,
A.
,
2001
, “
Bubble-Based Micropump for Electrically Conducting Liquids
,”
J. Micromech. Microeng.
,
11
, pp.
270
276
.
37.
Ory
,
E.
,
Yuan
,
H.
,
Prosperetti
,
A.
,
Popinet
,
S.
, and
Zaleski
,
S.
,
2000
, “
Growth and Collapse of a Vapor Bubble in a Narrow Tube
,”
Phys. Fluids
,
12
, pp.
1268
1277
.
38.
Pozrikidis
,
C.
,
2001
, “
Interfacial Dynamics for Stokes Flow
,”
J. Comput. Phys.
,
169
, pp.
250
301
.
39.
Power, H., and Wrobel, L. C., 1995, Boundary Integral Methods in Fluid Mechanics, Computational Mechanics Publications, Southampton, UK.
40.
Kothe
,
D. B.
, and
Mjolsness
,
R. C.
,
1992
, “
Ripple: A New Model for Incompressible Flows With Free Surfaces
,”
AIAA J.
,
30
, pp.
2694
2700
.
41.
Unverdi
,
S. O.
, and
Tryggvason
,
G.
,
1992
, “
A Front Tracking Method for Viscous Incompressible Flows
,”
J. Comput. Phys.
,
100
, pp.
25
37
.
42.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
,
1994
, “
A Level-Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
,
114
, pp.
146
159
.
43.
Jacqmin
,
D.
,
1999
, “
Calculation of Two-Phase Navier-Stokes Flows Using Phase-Field Modeling
,”
J. Comput. Phys.
,
155
, pp.
96
127
.
44.
Kang
,
M.
,
Fedkiw
,
R. P.
, and
Liu
,
X.
,
2000
, “
A Boundary Condition Capturing Method for Multiphase Incompressible Flow
,”
J. Sci. Comput.
,
15
, pp.
323
360
.
45.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
, pp.
335
354
.
46.
Williams, M. W., Kothe, D. B., and Puckett, E. G., 1999, “Accuracy and Convergence of Continuum Surface-Tension Models,” in Fluid Dynamics at Interfaces, W. Shyy and W. Narayanan, eds., Cambridge University Press, New York.
47.
Ye
,
T.
,
Shyy
,
W.
,
Tsai
,
P.
, and
Chung
,
J. N.
,
2004
, “
Assessment of Sharp- and Continuous Interface Methods for Drop in Static Equilibrium
,”
Comput. Fluids
,
33
(
7
), pp.
917
926
.
48.
Ye
,
T.
,
Mittal
,
R.
,
Udaykumar
,
H. S.
, and
Shyy
,
W.
,
1999
, “
An Accurate Cartesian Grid Method for Viscous Incompressible Flows With Complex Immersed Boundaries
,”
J. Comput. Phys.
,
156
, pp.
209
240
.
49.
Ye
,
T.
,
Shyy
,
W.
, and
Chung
,
J. N.
,
2001
, “
A Fixed-Grid, Sharp-Interface Method for Bubble Dynamics and Phase Change
,”
J. Comput. Phys.
,
174
, pp.
781
815
.
50.
Farin, G., 1997, Curves and Surfaces for Computer-Aided Geometric Design, A Practical Guide, 4th ed., Academic Press, San Diego.
51.
Sapidis
,
N.
, and
Farin
,
G.
,
1990
, “
Automatic Fairing Algorithm for b-Splin Curves
,”
Comput.-Aided Des.
,
22
(
2
), pp.
121
129
.
52.
Chorin
,
A. J.
,
1968
, “
Numerical Solution of the Navier-Stokes Equations
,”
Math. Comput.
,
22
, pp.
745
762
.
53.
Kim
,
J.
, and
Moin
,
P.
,
1985
, “
Application of a Fractional Step Method to Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
59
, pp.
308
323
.
54.
Zang
,
Y.
,
Street
,
R. L.
, and
Koseff
,
J. R.
,
1994
, “
A Non-Staggered Grid, Fractional Step Method for Time-Dependent Incompressible Navier-Stokes Equations in Curvilinear Coordinates
,”
J. Comput. Phys.
,
114
, pp.
18
33
.
55.
Pozrikidis
,
C.
,
1990
, “
The Deformation of a Liquid Drop Moving Normal to a Plane Wall
,”
J. Fluid Mech.
,
210
, pp.
331
363
.
You do not currently have access to this content.