The problem of inter-slice magnetic resonance (MR) image reconstruction is encountered often in medical imaging applications. In such scenarios, there is a need to approximate information not captured in contiguously acquired MR images due to hardware sampling limitations. In the context of velocity field reconstruction, these data are required for visualization and computational analyses of flow fields to be effective. To provide more complete velocity information, a method has been developed for the reconstruction of flow fields based on adaptive control grid interpolation (ACGI). In this study, data for reconstruction were acquired via MRI from in vitro models of surgically corrected pediatric cardiac vasculatures. Reconstructed velocity fields showed strong qualitative agreement with those obtained via other acquisition techniques. Quantitatively, reconstruction was shown to produce data of comparable quality to accepted velocity data acquisition methods. Results indicate that ACGI-based velocity field reconstruction is capable of producing information suitable for a variety of applications demanding three-dimensional in vivo velocity data.

1.
Migliavacca
,
F.
,
Kilner
,
P.
,
Pennati
,
G.
,
Dubini
,
G.
,
Pietrabissa
,
R.
,
Fumero
,
R.
, and
de Leval
,
M.
,
1999
, “
Computational Fluid Dynamic and Magnetic Resonance Analyses of Flow Distribution Between the Lungs After Total Cavopulmonary Connection
,”
IEEE Trans. Biomed. Eng.
,
46
, pp.
393
399
.
2.
Bolzon
,
G.
,
Pedrizzetti
,
G.
,
Grigioni
,
M.
,
Zovatto
,
L.
,
Daniele
,
C.
, and
D’Avenio
,
G.
,
2002
, “
Flow on the Symmetry Plane of a Total Cavo-Pulmonary Connection
,”
J. Biomech.
,
35
, pp.
595
608
.
3.
de Leval
,
M. R.
,
Dubini
,
G.
,
Migliavacca
,
F.
,
Jalali
,
H.
,
Camporini
,
G.
,
Redington
,
A.
, and
Pietrabissa
,
R.
,
1996
, “
Use of Computational Fluid Dynamics in the Design of Surgical Procedures: Application to the Study of Competitive Flows in Cavopulmonary Connections
,”
J. Thorac. Cardiovasc. Surg.
,
111
, pp.
502
513
.
4.
Amodeo
,
A.
,
Grigioni
,
M.
,
Oppido
,
P.
,
Daniele
,
C.
,
D’Avenio
,
G.
,
Pedrizzetti
,
G.
,
Giannico
,
S.
,
Filippelli
,
S.
, and
Di Donato
,
R. M.
,
2002
, “
The Beneficial Vortex and Best Spatial Arrangement in Total Extracardiac Cavopulmonary Connection
,”
Surg. For Congenital Heart Disease
,
124
, pp.
471
478
.
5.
Saber
,
N. R.
,
Gosman
,
A. D.
,
Wood
,
N. B.
,
Kilner
,
P. J.
,
Charrier
,
C. L.
, and
Firmin
,
D. N.
,
2001
, “
Computational Flow Modeling of the Left Ventricle Based on In Vivo MRI Data: Initial Experience
,”
Ann. Biomed. Eng.
,
29
, pp.
275
283
.
6.
Lee
,
T.
, and
Wang
,
W.
,
2000
, “
Morphology-Based Three-Dimensional Interpolation
,”
IEEE Trans. Med. Imaging
,
19
, pp.
711
721
.
7.
Higgins
,
W. E.
,
Morice
,
C.
, and
Ritman
,
E. L.
,
1993
, “
Shape-Based Interpolation of Tree-Like Structures in Three-Dimensional Images
,”
IEEE Trans. Med. Imaging
,
12
, pp.
439
450
.
8.
Treede
,
G. M.
,
Prager
,
R. W.
,
Gee
,
A. H.
, and
Berman
,
L.
,
2000
, “
Surface Interpolation From Sparse Cross Sections Using Region Correspondence
,”
IEEE Trans. Med. Imaging
,
19
, pp.
1106
1114
.
9.
Grevera
,
G. J.
, and
Udupa
,
J. K.
,
1996
, “
Shape-Based Interpolation of Multidimensional Gray-Level Images
,”
IEEE Trans. Med. Imaging
,
15
, pp.
881
892
.
10.
Raya
,
S. P.
, and
Udupa
,
J. K.
,
1990
, “
Surface Shape-Based Interpolation of Multidimensional Objects
,”
IEEE Trans. Med. Imaging
,
9
, pp.
32
42
.
11.
Grevera
,
G. J.
, and
Udupa
,
J. K.
,
1998
, “
An Objective Comparison of 3-d Image Interpolation Methods
,”
IEEE Trans. Med. Imaging
,
17
, pp.
642
652
.
12.
Reller
,
M.
,
McDonald
,
R.
,
Gerlis
,
L.
, and
Thornburg
,
K.
,
1991
, “
Cardiac Embryology: Basic Review and Clinical Correlations
,”
J. Am. Soc. Echocardiogr
,
4
, pp.
519
532
.
13.
Schlichting, H., 1979, Boundary Layer Theory, McGraw-Hill, New York.
14.
Migliavacca
,
F.
,
Dubini
,
G.
,
Pennati
,
G.
,
Pietrabissa
,
R.
,
Fumero
,
R.
,
Hsia
,
T.
, and
de Leval
,
M. R.
,
2000
, “
Computational Model of the Fluid Dynamics in Systemic-to-Pulmonary Shunts
,”
J. Biomech.
,
33
, pp.
549
557
.
15.
Spicer
,
C. A.
, and
Taylor
,
C. A.
,
2000
, “
Simulation-Based Medical Planning for Cardiovascular Disease: Visualization System Foundations
,”
Comput. Aided Surg.
,
2
, pp.
82
89
.
16.
Healy
,
T. M.
,
Lucas
,
C.
, and
Yoganathan
,
A. P.
,
2001
, “
Non-Invasive Fluid Dynamic Power Loss Assessments for Total Cavopulmonary Connections Using the Viscous Dissipation Function: A Feasibility Study
,”
ASME J. Biomech. Eng.
,
123
, pp.
317
324
.
17.
Sharma
,
S.
,
Goudy
,
S.
,
Walker
,
P.
,
Panchal
,
S.
,
Ensley
,
A.
,
Kanter
,
K.
,
Tam
,
V.
,
Fyfe
,
D.
, and
Yoganathan
,
A.
,
1996
, “
In Vitro Flow Experiments for Determination of Optimal Geometry of Total Cavopulmonary Connection for Surgical Repair of Children With Functional Single Ventricle
,”
J. Am. Coll. Cardiol.
,
27
, pp.
1264
1269
.
18.
Ensley, A., 2000, “A Fluid Mechanic Assessment of the Total Cavopulmonary Connection,” Masters thesis, Georgia Institute of Technology.
19.
Monaco, J., 1997, “Motion Models for Video Applications,” Ph.D. thesis, Georgia Institute of Technology.
20.
Horn, B., 1968, Robot Vision, The MIT Press, pp. 280–292.
21.
Frakes
,
D.
,
Sinotte
,
C. M.
,
Conrad
,
C. P.
,
Healy
,
T. M.
,
Shiva
,
S.
,
Fogel
,
M. A.
,
Monaco
,
J. W.
,
Smith
,
M. J.
, and
Yoganathan
,
A.
,
2002
, “
Application of an Adaptive Control Grid Interpolation Technique to Morphological Vascular Reconstruction
,”
Proc. SPIE Int. Soc. Opt. Eng.
,
4684
, pp.
1161
1167
.
22.
Shung, K., Smith, M., and Tsui, B., 1992, Principles of Medical Imaging, Academic Press, San Diego, pp. 213–267.
23.
Ensley
,
A. E.
,
Ramuzat
,
A.
,
Healy
,
T. M.
,
Chatzimavroudis
,
G. P.
,
Lucas
,
C.
,
Sharma
,
S.
,
Pettigrew
,
R.
, and
Yoganathan
,
A. P.
,
2000
, “
Assessment of the Fluid Mechanics of the Total Cavopulmonary Connection Using Magnetic Resonance Phase Velocity Mapping and Digital Particle Image Velocimetry
,”
Ann. Biomed. Eng.
,
28
, pp.
1172
1183
.
24.
Dubini
,
G.
,
de Leval
,
M. R.
,
Pietrabissa
,
R.
,
Montevecchi
,
F. M.
, and
Fumero
,
R.
,
1996
, “
A Numerical Fluid Mechanical Study of Repaired Congenital Heart Defects: Application to the Total Cavopulmonary Connection
,”
J. Biomech.
,
29
, pp.
111
121
.
25.
Frakes, D., Monaco, J., and Smith, M., 2001, “Suppression of Atmospheric Turbulence in Video Using an Adaptive Control Grid Interpolation Approach,” in Proceedings of the International Conference on Acoustics, Speech, and Signal Processing.
26.
Ferraro, F., 2003, Quantum Medical Radiology, personal interview.
27.
Wallin, A., Frakes, D., Brummer, M. E., Yoganathan, A., and Chapman, A. B., 2003, “Improvements in Validation Studies: Polyvinyl Alcohol (PVA) Phantoms and Magnetic Resonance Imaging,” in Proceedings IEEE Biomedical Engineering Society Annual Fall Meeting.
You do not currently have access to this content.