An unconstrained loading system was developed to measure the passive envelope of joint motion in an animal model commonly used to study ligament healing and joint arthritis. The design of the five-degree-of-freedom system allowed for unconstrained knee joint loading throughout flexion with repeated removal and reapplication of the device to a specimen. Seven New Zealand White rabbit knees were subjected to varus, valgus, internal and external loads, and the resulting envelopes of motion were recorded using an electromagnetic tracking device. Intra-specimen reproducibility was excellent when measured in one specimen, with maximal rotational differences of 0.6 and 0.3 deg between the fourth and fifth testing cycles for the varus (VR) and valgus (VL) envelopes, respectively. Similarly, the maximal internal (INT) and external (EXT) envelope differences were 0.5 and 0.4 deg, respectively, between the fourth and fifth cycles. Good inter-animal envelope reproducibility was also observed with consistent motion pathways for each loading condition. A maximal VR-VL laxity of 17.9±2.3 deg was recorded at 95 deg flexion for the seven knees tested. The maximal INT-EXT laxity of 75.2±4.8 deg occurred at 50 deg flexion. Studies on measurement reproducibility of re-applying individual testing components demonstrated a maximal error of 1.2 ± 0.7 deg. Serial removal and re-application (test–retest) of the complete measuring system to one cadaveric knee demonstrated maximal envelope differences of less than 0.7 deg for VR-VL rotation and 2.1 deg for INT-EXT rotation. Our results demonstrate that the measuring system is reproducible and capable of accurate evaluation of knee joint motion. Baseline in vitro data were generated on normal joint kinematics for future in-vivo studies with this system, evaluating ligament healing and disease progression in arthritis models.

1.
Radin
,
E. L.
,
Martin
,
R. B.
,
Caterson
,
B.
,
Boyd
,
R. D.
, and
Goodwin
,
C.
,
1984
, “
Effects of Mechanical Loading on the Tissues of the Rabbit Knee
,”
J. Orthop. Res.
,
2
, pp.
221
234
.
2.
Reimann
,
I.
,
1973
, “
Experimental Osteoarthritis of the Knee in Rabbits Induced by Alteration of the Load-Bearing
,”
Acta Orthop. Scand.
,
44
, pp.
496
504
.
3.
Bray
,
R. C.
,
G.
, Shrive,
N.
,
Frank
,
C. B.
, and
Chimich
,
D. D.
,
1992
, “
The Early Effects of Joint Immobilization on Medial Collateral Ligament Healing in an ACL-Deficient Knee: A Gross Anatomic and Biomechanical Investigation in the Adult Rabbit Model
,”
J. Orthop. Res.
,
7
, p.
474
485
.
4.
Ballock
,
R. T.
,
Woo
,
S. L.-Y.
,
Lyon
,
R. M.
,
Hollis
,
J. M.
, and
Akeson
,
W. H.
,
1989
, “
Use of Patellar Tendon Autograft for Anterior Cruciate Reconstruction in the Rabbit: A Long Term Histologic and Biomechanical Study
,”
J. Orthop. Res.
,
7
, pp.
474
485
.
5.
Frank
,
C.
,
Woo
,
S. L.-Y.
,
Amiel
,
D.
,
Harwood
,
F.
,
Gomez
,
M.
, and
Akeson
,
W.
,
1983
, “
Medial Collateral Ligament Healing. A Multidisciplinary Assessment in Rabbits
,”
Am. J. Sports Med.
,
11
, pp.
379
389
.
6.
King
,
G. J. W.
,
Edwards
,
P.
,
Brant
,
R.
,
Shrive
,
N.
, and
Frank
,
C.
,
1995
, “
Intra-Operative Graft Tensioning Alters Viscoelastic but Not Failure Behaviors of Rabbit Medial Collateral Ligament Autografts
,”
J. Orthop. Res.
,
13
, pp.
915
922
.
7.
Matsuura
,
T.
,
Goldberg
,
V.
,
Mansour
,
J. M.
, and
Bensusan
,
J.
,
1991
, “
The Role of Stabilizers in the Anterior–Posterior Motion and Internal–External Rotation of the Rabbit Knee
,”
ASME J. Biomech. Eng.
,
120
, pp.
177
180
.
8.
Torzilli
,
P. A.
, and
Arnoczky
,
S. P.
,
1988
, “
Mechanical Properties of the Lateral Collateral Ligament: Effect of Cruciate Instability in the Rabbit
,”
ASME J. Biomech. Eng.
,
110
, pp.
208
212
.
9.
Weiss
,
J. A.
,
Woo
,
S. L.-Y.
,
Ohland
,
K. J.
,
Horibe
,
S.
, and
Newton
,
P. O.
,
1991
, “
Evaluation of a New Injury Model to Study Medial Collateral Ligament Healing: Primary Repair Versus Non-operative Treatment
,”
J. Orthop. Res.
,
9
, pp.
516
528
.
10.
Bohr
,
H.
,
1976
, “
Experimental Osteoarthritis in the Rabbit Knee Joint
,”
Acta Orthop. Scand.
,
47
, pp.
558
565
.
11.
Hulth
,
A.
,
Lindberg
,
L.
, and
Telhag
,
H.
,
1970
, “
Experimental Osteoarthritis in Rabbits
,”
Acta Orthop. Scand.
,
41
, pp.
522
530
.
12.
Ogata
,
K.
,
Whiteside
,
L. A.
,
Lesker
,
P. A.
, and
Simmons
,
D. J.
,
1977
, “
The Effect of Varus Stress on the Moving Rabbit Knee Joint
,”
Clin. Orthop. Relat. Res.
,
129
, pp.
314
318
.
13.
Blankevoort
,
L.
,
van Osch
,
G. J. V. M.
,
Hekman
,
E.
, and
Janssen
,
B.
,
1996
, “
In-Vitro Laxity-Testers for Knee Joints of Mice
,”
J. Biomech.
,
29
, pp.
799
806
.
14.
Grood
,
E. S.
,
Stowers
,
S. F.
, and
Noyes
,
F. R.
,
1988
, “
Limits of Movement in the Human Knee
,”
J. Bone Joint Surg.
,
70-A
, pp.
88
97
.
15.
Lane
,
J. G.
,
Irby
,
S. E.
,
Kaufman
,
K.
,
Rangger
,
C.
, and
Daniel
,
D. M.
,
1994
, “
The Anterior Cruciate Ligament in Controlling Axial Rotation: An Evaluation of Its Effect
,”
Am. J. Sports Med.
,
22
, pp.
289
293
.
16.
Maitland
,
E. M.
,
Leonard
,
T.
,
Frank
,
C. B.
,
Shrive
,
N. G.
, and
Herzog
,
W.
,
1998
, “
Method to Assess In Vivo Knee Stability Longitudinally in an Animal Model of Ligament Injury
,”
J. Orthop. Res.
,
16
,
441
447
.
17.
Mills
,
O. S.
, and
Hull
,
M. L.
,
1991
, “
Rotational Flexibility of the Human Knee Due to Varus/Valgus and Axial Moments In Vivo
,”
J. Biomech.
,
24
, pp.
673
690
.
18.
Oster
,
D. M.
,
Grood
,
E. S.
,
Feder
,
S. M.
,
Butler
,
D. L.
, and
Levy
,
M. S.
,
1992
, “
Primary and Coupled Motions in the Intact and the ACL-Deficient Knee: An In Vitro Study in the Goat Model
,”
J. Orthop. Res.
,
10
, pp.
476
484
.
19.
Blankevoort
,
L.
,
Huiskes
,
R.
, and
de Lange
,
A.
,
1988
, “
The Envelope of Passive Knee Joint Motion
,”
J. Biomech.
,
21
, pp.
705
720
.
20.
Butler
,
D. L.
,
Noyes
,
F. R.
, and
Grood
,
E. S.
,
1980
, “
Ligamentous Restraints to Anterior–Posterior Drawer in the Human Knee
,”
J. Bone Joint Surg.
,
62A
, pp.
259
2709
.
21.
Grood
,
E. S.
,
Noyes
,
F. R.
,
Butler
,
D. L.
,
Suntay
,
W. J.
,
1981
, “
Ligamentous and Capsular Restraints Preventing Straight Medial and Lateral Laxity in Intact Human Cadaver Knees
,”
J. Bone Joint Surg.
,
63-A
, pp.
1257
1269
.
22.
Fukubayashi
,
T.
,
Torzilli
,
P. A.
,
Sherman
,
M. F.
, and
Warren
,
R. F.
,
1982
, “
An In-Vitro Biomechanical Evaluation of Anterior Posterior Motion of the Knee
,”
J. Bone Joint Surg.
,
64-A
, pp.
258
64
.
23.
Lipke
,
J. L.
,
Janecki
,
C. J.
,
Nelson
,
C. L.
,
McLeod
,
P.
,
Thompson
,
J.
, and
Haynes
,
D. W.
,
1981
, “
The Role of Incompetence of the Anterior Cruciate and Lateral Ligaments in Anterolateral and Anteromedial Instability
,”
J. Bone Joint Surg.
,
63-A
, pp.
954
960
.
24.
Markolf
,
K. L.
,
Bargar
,
W. L.
,
Shoemaker
,
S. C.
, and
Amstutz
,
H. C.
,
1981
, “
The Role of Joint Load in Knee Stability
,”
J. Bone Joint Surg.
,
63-A
, pp.
570
585
.
25.
Bach
,
J. M.
, and
Hull
,
M. L.
,
1995
, “
A New Load Application System for In Vitro Study of Ligamentous Injuries to the Human Knee Joint
,”
ASME J. Biomech. Eng.
,
117
,
373
381
.
26.
Berns
,
G. S.
,
Hull
,
M. L.
, and
Patterson
,
H. A.
,
1990
, “
Implementation of a Five Degree of Freedom Automated System to Determine Knee Flexibility In Vitro
,”
ASME J. Biomech. Eng.
,
112
, pp.
392
400
.
27.
Mills
,
O. S.
, and
Hull
,
M. L.
,
1991
, “
Apparatus to Obtain Rotational Flexibility of the Human Knee Under Moment Loads In Vivo
,”
J. Biomech.
,
24
, pp.
351
369
.
28.
Lewis
,
J. L.
,
Lew
,
W. D.
, and
Schmidt
,
J.
,
1988
, “
Description and Error Evaluation of an In Vitro Knee Joint Testing System
,”
ASME J. Biomech. Eng.
,
110
, pp.
238
248
.
29.
Inoue
,
M.
,
McGurk-Burleson
,
E.
,
Hollis
,
J. M.
, and
Woo
,
S. L.-Y.
,
1987
, “
Treatment of the Medial Collateral Ligament Injury. I: The Importance of Anterior Cruciate Ligament on the Varus-Valgus Knee Laxity
,”
Am. J. Sports Med.
,
15
, pp
15
21
.
30.
Hollis
,
J. M.
,
Takai
,
S.
,
Adams
,
D. J.
,
Horibe
,
S.
, and
Woo
,
S. L.-Y.
,
1991
, “
The Effects of Knee Motion and External Loading on the Length of the Anterior Cruciate Ligament (ACL): A Kinematic Study
,”
ASME J. Biomech. Eng.
,
113
, pp.
208
214
.
31.
Milne
,
A. D.
,
Chess
,
D. G.
,
Johnson
,
J. A.
, and
King
,
G. J. W.
,
1996
, “
Accuracy of an Electromagnetic Tracking Device: A Study of the Optimal Operating Range and Metal Interference
,”
J. Biomech.
,
29
, pp.
791
793
.
32.
Hollister
,
A. M.
,
Jatana
,
S.
,
Singh
,
A. K.
,
Sullivan
,
W. W.
, and
Lupichuk
,
A. G.
,
1993
, “
The Axes of Rotation of the Knee
,”
Clin. Orthop. Relat. Res.
,
129
, pp.
259
268
.
33.
Korvick
,
D. L.
,
Pijanowski
,
G. I.
, and
Schaeffer
,
D. J.
,
1994
, “
Three-Dimensional Kinematics of the Intact and Cranial Cruciate Ligament Deficient Stifle of Dogs
,”
J. Biomech.
,
27
, pp.
77
84
.
34.
Nahass
,
B. E.
,
Madson
,
M. M.
, and
Walker
,
P. S.
,
1991
, “
Motion of the Knee After Condylar Resurfacing—An In-Vivo Study
,”
J. Biomech.
,
24
, pp.
1107
1117
.
35.
Grigg
,
P.
, and
Hoffman
,
A. H.
,
1993
, “
Loading and Deformation of the Cat Posterior Knee Joint Capsule in Axial and Extension Rotations
,”
J. Biomech.
,
26
, pp.
1283
1290
.
36.
Chao
,
E. Y. S.
,
1980
, “
Justification of Triaxial Goniometer for the Measurement of Joint Rotation
,”
J. Biomech.
,
13
, pp.
989
1006
.
37.
Kurosawa
,
H.
,
Walker
,
P. S.
,
Abe
,
S.
,
Garg
,
A.
, and
Hunter
,
T.
,
1985
, “
Geometry and Motion of the Knee for Implant and Orthotic Design
,”
J. Biomech.
,
18
, pp.
487
499
.
38.
Suntay
,
W. J.
,
Grood
,
E. S.
,
Hefzy
,
M. S.
,
Butler
,
D. L.
, and
Noyes
,
F. R.
,
1983
, “
Error Analysis of a System for Measuring Three-Dimensional Joint Motion
,”
ASME J. Biomech. Eng.
,
105
, pp.
127
135
.
39.
Fuller
,
J.
,
Liu
,
L.-J.
,
Murphy
,
M. C.
, and
Mann
,
R. W.
,
1997
, “
A Comparison of Lower-Extremity Skeletal Kinematics Measured Using Skin- and Pin-Mounted Markers
,”
Human. Motion Sci.
,
16
, pp.
219
242
.
You do not currently have access to this content.