It has been hypothesized that vascular injury may be an important mechanism of cryosurgical destruction in addition to direct cellular destruction. In this study, we report correlation of tissue and vascular injury after cryosurgery to the temperature history during cryosurgery in an in vivo microvascular preparation. The dorsal skin flap chamber, implanted in the Copenhagen rat, was chosen as the cryosurgical model. Cryosurgery was performed in the chamber on either normal skin or tumor tissue propagated from an AT-1 Dunning rat prostate tumor, as described in a companion paper (Hoffmann and Bischof, 2001). The vasculature was then viewed at 3 and 7 days after cryoinjury under brightfield and FITC-labeled dextran contrast enhancement to assess the vascular injury. The results showed that there was complete destruction of the vasculature in the center of the lesion and a gradual return to normal patency moving radially outward. Histologic examination showed a band of inflammation near the edge of a large necrotic region at both 3 and 7 days after cryosurgery. The area of vascular injury observed with FITC-labeled dextran quantitatively corresponded to the area of necrosis observed in histologic section, and the size of the lesion for tumor and normal tissue was similar at 3 days post cryosurgery. At 7 days after cryosurgery, the lesion was smaller for both tissues, with the normal tissue lesion being much smaller than the tumor tissue lesion. A comparison of experimental injury data to the thermal model validated in a companion paper (Hoffmann and Bischof, 2001) suggested that the minimum temperature required for causing necrosis was 15.6±4.3°C in tumor tissue and 19.0±4.4°C in normal tissue. The other thermal parameters manifested at the edge of the lesion included a cooling rate of ∼28°C/min, 0 hold time, and a ∼9°C/min thawing rate. The conditions at the edge of the lesion are much less severe than the thermal conditions required for direct cellular destruction of AT-1 cells and tissues in vitro. These results are consistent with the hypothesis that vascular-mediated injury is responsible for the majority of injury at the edge of the frozen region in microvascular perfused tissue.

1.
Gage
,
A. A.
, and
Baust
,
J.
,
1998
, “
Mechanisms of Tissue Injury in Cryosurgery
,”
Cryobiology
,
37
, No.
3
, pp.
171
186
.
2.
Hoffmann
,
N. E.
, and
Bischof
,
J. C.
,
2001
, “
Cryosurgery of Normal and Tumor Tissue in the Dorsal Skin Flap Chamber: Part I—Thermal Response
,”
ASME J. Biomech. Eng.
,
123
, this issue, pp.
301
309
.
3.
Bischof
,
J. C.
,
Smith
,
D. J.
,
Pazhayannur
,
P. V.
,
Manivel
,
C.
,
Hulbert
,
J.
, and
Roberts
,
K. P.
,
1997
, “
Cryosurgery of Dunning AT-1 Rat Prostate Tumor: Thermal, Biophysical and Viability Response at the Cellular and Tissue Level
,”
Cryobiology
,
34
, pp.
42
69
.
4.
Jacob
,
G.
,
Kurzer
,
M. N.
, and
Fuller
,
B. J.
,
1985
, “
An Assessment of Tumor Cell Viability After in Vitro Freezing
,”
Cryobiology
,
22
, pp.
417
426
.
5.
Lovelock
,
J. E.
,
1953
, “
The Mechanism of the Protective Action of Glycerol Against Haemolysis by Freezing and Thawing
,”
Biochim. Biophys. Acta
,
11
, pp.
28
36
.
6.
Mazur
,
P.
,
1984
, “
Freezing of Living Cells: Mechanisms and Implications
,”
Am. J. Physiol.
,
143
, pp.
C125–C142
C125–C142
.
7.
Roberts
,
K. P.
,
Smith
,
D.
,
Ozturk
,
H.
,
Kazem
,
A.
,
Pazhayannur
,
P.
,
Hulbert
,
J. C.
, and
Bischof
,
J. C.
,
1997
, “
Biochemical Alterations and Tissue Viability in AT-1 Tumor Tissue After in Vitro Cryo-Ablation
,”
Cryo-Letters
,
18
, pp.
241
250
.
8.
Smith
,
D. J.
,
Fahssi
,
W. M.
,
Swanlund
,
D. J.
, and
Bischof
,
J. C.
,
1999
, “
A Parametric Study of Freezing Injury in AT-1 Rat Prostate Tumor Cells
,”
Cryobiology
,
39
, pp.
13
28
.
9.
Tatsutani
,
K.
,
Rubinsky
,
B.
,
Onik
,
G.
, and
Dahiya
,
R.
,
1996
, “
Effect of Thermal Variables on Frozen Human Primary Prostatic Adenocarcinoma Cells
,”
Urology
,
48
, pp.
441
447
.
10.
Zacarian
,
S. A.
,
1977
, “
The Observation of Freeze–Thaw Cycles Upon Cancer Cell Suspensions
,”
J. Dermatol. Surg. Oncol.
,
3
, pp.
173
174
.
11.
Cohnheim
,
J.
,
1877
, “
Lectures on General Pathology
,”
New Sydenham Society
,
1
, pp.
242
297
.
12.
Lewis
,
T.
, and
Love
,
W. S.
,
1926
, “
Vascular Reactions of the Skin to Injury. III: Some Effects of Freezing, of Cooling, and of Warming
,”
Heart
,
13
, pp.
27
60
.
13.
Rotnes
,
P. L.
, and
Kreyberg
,
L.
,
1932
, “
Eine Methode zum Experimentelen Nachweis Von Stase Mittels Spezieller Praeparate
,”
Acta Pathol. Microbiol. Scand.
,
11
, pp.
162
165
.
14.
Greene
,
R.
,
1943
, “
The Immediate Vascular Changes in True Frostbite
,”
J. Pathol. Bacteriol.
,
55
, p.
259
259
.
15.
Rabb
,
J. M.
,
Renaud
,
M. L.
,
Brandt
,
A.
, and
Witt
,
C. W.
,
1974
, “
Effect of Freezing and Thawing on the Microcirculation and Capillary Endothelium of the Hamster Cheek Pouch
,”
Cryobiology
,
11
, pp.
508
518
.
16.
Quintanella
,
R.
,
Krusen
,
F. H.
, and
Essex
,
H. E.
,
1947
, “
Studies on Frost-Bite With Special Reference to Treatment and the Effect on Minute Blood Vessels
,”
Am. J. Physiol.
,
149
, pp.
149
161
.
17.
Kreyberg
,
L.
, and
Hanssen
,
O. E.
,
1950
, “
Necrosis of Whole Mouse Skin in Situ and Survival of Transplanted Epithelium After Freezing to −78°C and −196°C
,”
Scand. J. Clin. Lab. Invest.
,
2
, pp.
168
170
.
18.
Papenfuss
,
H. D.
,
Gross
,
J. F.
,
Intaglietta
,
M.
, and
Treese
,
F. A.
,
1979
, “
A Transparent Access Chamber for the Rat Dorsal Skin Fold
,”
Microvasc. Res.
,
18
, No.
3
, pp.
311
318
.
19.
Isaacs
,
J. T.
,
Isaacs
,
W. B.
,
Feitz
,
W. F.
, and
Scheres
,
J.
,
1986
, “
Establishment and Characterization of Seven Dunning Rat Prostatic Cancer Cell Lines and Their Use in Developing Methods for Predicting Metastatic Abilities of Prostatic Cancers
,”
Prostate
,
9
, No.
3
, pp.
261
281
.
20.
Gaber
,
M. H.
,
Wu
,
N. Z.
,
Hong
,
K.
,
Huang
,
S. K.
,
Dewhirst
,
M. W.
, and
Papahadjopoulos
,
D.
,
1996
, “
Thermosensitive Liposomes: Extravasation and Release of Contents in Tumor Microvascular Networks
,”
Int. J. Radiat. Oncol., Biol., Phys.
,
36
, No.
5
, pp.
1177
1187
.
21.
Aggarwal
,
S. J.
,
Shah
,
S. J.
,
Diller
,
K. R.
, and
Baxter
,
C. R.
,
1989
, “
Fluorescence Digital Microscopy of Interstitial Macromolecular Diffusion in Burn Injury
,”
Comput. Biol. Med.
,
19
, No.
4
, pp.
245
261
.
22.
Yuan
,
F.
,
Leunig
,
M.
,
Berk
,
D. A.
, and
Jain
,
R. K.
,
1993
, “
Microvascular Permeability of Albumin, Vascular Surface Area, and Vascular Volume Measured in Human Adenocarcinoma LS174T Using Dorsal Chamber in SCID Mice
,”
Microvasc. Res.
,
45
, No.
3
, pp.
269
89
.
23.
Endrich
,
B.
,
Laprell-Moschner
,
C.
,
Brendel
,
W.
, and
Messmer
,
K.
,
1982
, “
Effects of Prolonged Cold Injury on the Subcutaneous Microcirculation of the Hamster. I. Technique, Morphology and Tissue Oxygenation
,”
Res. Exp. Med.
,
181
, No.
1
, pp.
49
61
.
24.
Leunig
,
M.
,
Yuan
,
F.
,
Menger
,
M. D.
,
Boucher
,
Y.
,
Goetz
,
A. E.
,
Messmer
,
K.
, and
Jain
,
R. K.
,
1992
, “
Angiogenesis, Microvascular Architecture, Microhemodynamics, and Interstitial Fluid Pressure During Early Growth of Human Adenocarcinoma LS174T in SCID Mice
,”
Cancer Res.
,
52
, No.
23
, pp.
6553
6560
.
25.
Bevington, P. R., and Robinson, D. K., 1992, “Error Analysis,” in: Data Reduction and Error Analysis for the Physical Sciences, 2nd ed., McGraw-Hill, New York, pp. 38–48.
26.
Moore, D. S., and McCabe, G. P., 1993, “Inference for Distributions,” in: Introduction to the Practice of Statistics, W. H. Freeman, New York, pp. 498–574.
27.
Gage
,
A.
,
Greene
,
G.
,
Neiders
,
M.
, and
Emmings
,
F.
,
1966
, “
Freezing Bone Without Excision: An Experimental Study of Bone-Cell Destruction and Manner of Regrowth in Dogs
,”
J. Am. Med. Assoc.
,
196
, pp.
770
774
.
28.
Staren
,
E. D.
,
Sabel
,
M. S.
,
Gianakakis
,
L. M.
,
Wiener
,
G. A.
,
Hart
,
V. M.
,
Gorski
,
M.
,
Dowlatshahi
,
K.
,
Corning
,
B. F.
,
Haklin
,
M. F.
, and
Koukoulis
,
G.
,
1997
, “
Cryosurgery of Breast Cancer
,”
Arch. Surg.
,
132
, No.
1
, pp.
28
33
.
29.
Le Pivert, P., 1980, “Basic Considerations of the Cryolesion,” in: Handbook of Cryosurgery, R. Ablin, ed., Marcel Dekker, New York. pp. 15–68.
30.
Cotran
,
R. S.
, and
Majno
,
G.
,
1964
, “
A Light and Electron Microscopic Analysis of Vascular Injury
,”
Ann. New York Acad. Sci.
,
116
, pp.
750
764
.
31.
Aggarwal
,
S. J.
,
Diller
,
K. R.
,
Blake
,
G. K.
, and
Baxter
,
C. R.
,
1994
, “
Burn-Induced Alterations in Vasoactive Function of the Peripheral Cutaneous Microcirculation
,”
J. Burn Care Rehabil.
,
15
, No.
1
, pp.
1
12
.
32.
Ninomiya
,
T.
,
Yosimura
,
H.
, and
Mori
,
M.
,
1985
, “
Identification of Vascular System in Experimental Carcinoma for Cryosurgery—Histochemical Observations of Lectin UEA-1 and Alkaline Phosphatase Activity in Vascular Endothelium
,”
Cryobiology
,
22
, No.
4
, pp.
331
335
.
33.
Marzella
,
L.
,
Jesudass
,
R. R.
,
Manson
,
P. N.
,
Myers
,
R. A.
, and
Bulkley
,
G. B.
,
1989
, “
Morphologic Characterization of Acute Injury to Vascular Endothelium of Skin After Frostbite
,”
Plast. Reconstr. Surg.
,
83
, No.
1
, pp.
67
76
.
34.
Bourne
,
M. H.
,
Piepkorn
,
M. W.
,
Clayton
,
F.
, and
Leonard
,
L. G.
,
1986
, “
Analysis of Microvascular Changes in Frostbite Injury
,”
J. Surg. Res.
,
40
, No.
1
, pp.
26
35
.
35.
Manson
,
P. N.
,
Jesudass
,
R.
,
Marzella
,
L.
,
Bulkley
,
G. B.
,
Im
,
M. J.
, and
Narayan
,
K. K.
,
1991
, “
Evidence for an Early Free Radical-Mediated Reperfusion Injury in Frostbite
,”
Free Radic Biol. Med.
,
10
, No.
1
, pp.
7
11
.
36.
Barker
,
J. H.
,
Bartlett
,
R.
,
Funk
,
W.
,
Hammersen
,
F.
, and
Messmer
,
K.
,
1987
, “
The Effect of Superoxide Dismutase on the Skin Microcirculation After Ischemia and Reperfusion
,”
Prog. Appl. Microcirculation
,
12
, pp.
276
281
.
37.
Bellman
,
S.
, and
Adams-Ray
,
J.
,
1956
, “
Vascular Reactions After Experimental Cold Injury
,”
Angiology
,
7
, pp.
339
367
.
38.
Cotran, R. S., Kumar, V., and Collins, T., 1999, “Cellular Injury and Cell Death,” in: Pathologic Basis of Disease, W. B. Saunders, Philadelphia, pp. 1–31.
39.
Vainio
,
O. M.
,
Bloor
,
B. C.
, and
Kim
,
C.
,
1992
, “
Cardiovascular Effects of a Ketamine-Medetomidine Combination That Produces Deep Sedation in Yucatan Mini Swine
,”
Lab Anim. Sci.
,
42
, No.
6
, pp.
582
588
.
40.
Coulson
,
N. M.
,
Januszkiewicz
,
A. J.
,
Dodd
,
K. T.
, and
Ripple
,
G. R.
,
1989
, “
The Cardiorespiratory Effects of Diazepam–Ketamine and Xylazine–Ketamine Anesthetic Combinations in Sheep
,”
Lab Anim. Sci.
,
39
, No.
6
, pp.
591
597
.
41.
Rousselle
,
C. H.
,
Lefauconnier
,
J. M.
, and
Allen
,
D. D.
,
1998
, “
Evaluation of Anesthetic Effects on Parameters for the in Situ Rat Brain Perfusion Technique
,”
Neurosci. Lett.
,
257
, No.
3
, pp.
139
142
.
42.
Menke
,
H.
, and
Vaupel
,
P.
,
1988
, “
Effect of Injectable or Inhalational Anesthetics and of Neuroleptic, Neuroleptanalgesic, and Sedative Agents on Tumor Blood Flow
,”
Radiat. Res.
,
114
, No.
1
, pp.
64
76
.
43.
Hoffmann
,
N. E.
,
Coad
,
J. E.
,
Huot
,
C. S.
,
Swanlund
,
D. J.
, and
Bischof
,
J. C.
,
1999
, “
Investigating the Mechanism and Effect of Cryoimmunology in the Copenhagen Rat
,”
Cryobiology
,
41
, No.
1
, pp.
59
68
.
44.
Chosy
,
S.
,
Nakada
,
S.
,
Lee
,
F.
, and
Warner
,
T.
,
1998
, “
Monitoring Renal Cryosurgery: Predictors of Tissue Necrosis in Swine
,”
J. Urol.
,
159
, pp.
1370
1374
.
45.
Neel
,
H. B.
,
Ketcham
,
A. S.
, and
Hammond
,
W. G.
,
1971
, “
Cryonecrosis of Normal and Tumor-Bearing Rat Liver Potentiated by Inflow Occlusion
,”
Cancer
,
28
, No.
5
, pp.
1211
1218
.
You do not currently have access to this content.