In vitro pulsatile flow visualization studies were conducted to assess the effects of varying radii of curvature of the right ventricular outflow tract (RVOT) and main pulmonary artery (MPA) on the flow fields in the main, right, and left pulmonary arteries of a one month lamb pulmonary artery model. Three glass flow-through models were studied; one with no curvature, one with the correct anatomic curvature, and one with an overaccentuated curvature on the RVOT and MPA. All other geometric parameters were held constant. Pulsatile flow visualization studies were conducted at nine flow conditions; heart rates of 70, 100, and 140 bpm, and cardiac outputs of 1.5, 2.5 and 3.5 l/min with corresponding mean pulmonary pressures of 10, 20, and 30 mmHg. Changes were observed in the pulmonary flow fields as the curvature of the outflow tract, heart rate and mean pulmonary pressure were varied. An increase in vessel curvature led to an increase in the overall radial nature of the flow field as well as flow separation regions which formed faster, originated further downstream, and occupied more of the vessel area. At higher heart rates, the maximum size of the separation regions decreased, while flow separation regions appeared earlier in the cardiac cycle and grew more quickly. Heart rate also affected the initiation of flow reversal; flow reversal occurred later in the cardiac cycle at lower heart rates. Both heart rate and mean pulmonary pressure influenced the stability of the pulmonary flow field and the appearance of coherent structures. In addition, an increase in mean pulmonary pressure increased the magnitude of reverse flow. These flow visualization observations have directed more quantitative studies such as pulsed Doppler ultrasound and laser Doppler anemometry velocity measurements.

This content is only available via PDF.
You do not currently have access to this content.