Research Papers

A Three-Dimensional Mixed Finite Element for Flexoelectricity

[+] Author and Article Information
Feng Deng

State Key Laboratory for Strength and Vibration
of Structures,
School of Aerospace Engineering,
Xi'an Jiaotong University,
Xi'an 710049, China

Qian Deng

State Key Laboratory for Strength and
Vibration of Structures,
School of Aerospace Engineering,
Xi'an Jiaotong University,
Xi'an 710049, China
e-mail: tonydqian@mail.xjtu.edu.cn

Shengping Shen

State Key Laboratory for Strength
and Vibration of Structures,
School of Aerospace Engineering,
Xi'an Jiaotong University,
Xi'an 710049, China
e-mail: sshen@mail.xjtu.edu.cn

1Corresponding authors.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received November 17, 2017; final manuscript received December 30, 2017; published online January 24, 2018. Editor: Yonggang Huang.

J. Appl. Mech 85(3), 031009 (Jan 24, 2018) (10 pages) Paper No: JAM-17-1640; doi: 10.1115/1.4038919 History: Received November 17, 2017; Revised December 30, 2017

Flexoelectric effect is a universal and size-dependent electromechanical coupling between the strain gradient and electric field. The mathematical framework for flexoelectricity, which involves higher-order gradients of field quantities, is difficult to handle using traditional finite element method (FEM). Thus, it is important to develop an effective numerical method for flexoelectricity. In this paper, we develop a three-dimensional (3D) mixed finite element considering both flexoelectricity and strain gradient elasticity. To validate the developed element, we simulate the electromechanical behavior of a flexoelectric spherical shell subjected to inner pressure and compare the numerical results to analytical results. Their excellent agreement shows the reliability of the proposed FEM. The developed finite element is also used to simulate the electromechanical behavior of a nanometer-sized flexoelectric truncated pyramid. By decreasing the sample size, we observed the increase of its effective piezoelectricity. However, due to the effects of strain gradient elasticity and the influence of flexoelectricity on stiffness, the dependency of effective piezoelectricity on the sample size is not trivial. Numerical results indicate that, when the sample size is smaller than a certain value, the increase of effective piezoelectricity slows down. This finding also shows the importance of a numerical tool for the study of flexoelectric problems.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Sharma, N. , Maranganti, R. , and Sharma, P. , 2007, “ On the Possibility of Piezoelectric Nanocomposites Without Using Piezoelectric Materials,” J. Mech. Phys. Solids, 55(11), pp. 2328–2350. [CrossRef]
Nanthakumar, S. , Lahmer, T. , Zhuang, X. , Zi, G. , and Rabczuk, T. , 2016, “ Detection of Material Interfaces Using a Regularized Level Set Method in Piezoelectric Structures,” Inverse Probl. Sci. Eng., 24(1), pp. 153–176. [CrossRef]
Nanthakumar, S. , Lahmer, T. , and Rabczuk, T. , 2014, “ Detection of Multiple Flaws in Piezoelectric Structures Using XFEM and Level Sets,” Comput. Methods Appl. Mech. Eng., 275, pp. 98–112. [CrossRef]
Anton, S. R. , and Sodano, H. A. , 2007, “ A Review of Power Harvesting Using Piezoelectric Materials (2003–2006),” Smart Mater. Struct., 16(3), p. R1. [CrossRef]
Roundy, S. , 2005, “ On the Effectiveness of Vibration-Based Energy Harvesting,” J. Intell. Mater. Syst. Struct., 16(10), pp. 809–823. [CrossRef]
Kogan, S. M. , 1964, “ Piezoelectric Effect During Inhomogeneous Deformation and Acoustic Scattering of Carriers in Crystals,” Solid State Commun., 5(10), pp. 2069–2070.
Meyer, R. B. , 1969, “ Piezoelectric Effects in Liquid Crystals,” Phys. Rev. Lett., 22(18), p. 918. [CrossRef]
Zubko, P. , Catalan, G. , and Tagantsev, A. K. , 2013, “ Flexoelectric Effect in Solids,” Annu. Rev. Mater. Res., 43, pp. 387–421. [CrossRef]
Nguyen, T. D. , Mao, S. , Yeh, Y. W. , Purohit, P. K. , and McAlpine, M. C. , 2013, “ Nanoscale Flexoelectricity,” Adv. Mater., 25(7), pp. 946–974. [CrossRef] [PubMed]
Zubko, P. , Catalan, G. , Buckley, A. , Welche, P. , and Scott, J. , 2007, “ Strain-Gradient-Induced Polarization in SrTiO 3 Single Crystals,” Phys. Rev. Lett., 99(16), p. 167601. [CrossRef] [PubMed]
Ma, W. , and Cross, L. E. , 2006, “ Flexoelectricity of Barium Titanate,” Appl. Phys. Lett., 88(23), p. 232902. [CrossRef]
Tagantsev, A. , 1986, “ Piezoelectricity and Flexoelectricity in Crystalline Dielectrics,” Phys. Rev. B, 34(8), p. 5883. [CrossRef]
Shu, L. , Wei, X. , Jin, L. , Li, Y. , Wang, H. , and Yao, X. , 2013, “ Enhanced Direct Flexoelectricity in Paraelectric Phase of Ba(Ti0.87Sn0.13)O3 Ceramics,” Appl. Phys. Lett., 102(15), p. 152904. [CrossRef]
Narvaez, J. , and Catalan, G. , 2014, “ Origin of the Enhanced Flexoelectricity of Relaxor Ferroelectrics,” Appl. Phys. Lett., 104(16), p. 162903. [CrossRef]
Prost, J. , and Pershan, P. S. , 1976, “ Flexoelectricity in Nematic and Smectic‐A Liquid Crystals,” J. Appl. Phys., 47(6), pp. 2298–2312. [CrossRef]
Čepič, M. , and Žekš, B. , 2001, “ Flexoelectricity and Piezoelectricity: The Reason for the Rich Variety of Phases in Antiferroelectric Smectic Liquid Crystals,” Phys. Rev. Lett., 87(8), p. 085501. [CrossRef] [PubMed]
Varanytsia, A. , and Chien, L.-C. , 2017, “ Giant Flexoelectro-Optic Effect With Liquid Crystal Dimer CB7CB,” Sci. Rep., 7, p. 41333. [CrossRef] [PubMed]
Chu, B. , and Salem, D. , 2012, “ Flexoelectricity in Several Thermoplastic and Thermosetting Polymers,” Appl. Phys. Lett., 101(10), p. 103905. [CrossRef]
Lu, J. , Lv, J. , Liang, X. , Xu, M. , and Shen, S. , 2016, “ Improved Approach to Measure the Direct Flexoelectric Coefficient of Bulk Polyvinylidene Fluoride,” J. Appl. Phys., 119(9), p. 094104. [CrossRef]
Petrov, A. G. , 2002, “ Flexoelectricity of Model and Living Membranes,” BBA-Biomembranes, 1561(1), pp. 1–25. [CrossRef] [PubMed]
Petrov, A. G. , 2006, “ Electricity and Mechanics of Biomembrane Systems: Flexoelectricity in Living Membranes,” Anal. Chim. Acta, 568(1), pp. 70–83. [CrossRef] [PubMed]
Ping-Cheng, Z. , Keleshian, A. M. , and Sachs, F. , 2001, “ Voltage-Induced Membrane Movement,” Nature, 413(6854), p. 428. [CrossRef] [PubMed]
Krichen, S. , and Sharma, P. , 2016, “ Flexoelectricity: A Perspective on an Unusual Electromechanical Coupling,” ASME J. Appl. Mech., 83(3), p. 030801. [CrossRef]
Tagantsev, A. , 1985, “ Theory of Flexoelectric Effect in Crystals,” JETP Lett., 88(6), pp. 2108–2122. http://www.jetp.ac.ru/cgi-bin/dn/e_061_06_1246.pdf
Majdoub, M. , Sharma, P. , and Cagin, T. , 2008, “ Enhanced Size-Dependent Piezoelectricity and Elasticity in Nanostructures Due to the Flexoelectric Effect,” Phys. Rev. B, 77(12), p. 125424. [CrossRef]
Maranganti, R. , Sharma, N. , and Sharma, P. , 2006, “ Electromechanical Coupling in Nonpiezoelectric Materials Due to Nanoscale Nonlocal Size Effects: Green's Function Solutions and Embedded Inclusions,” Phys. Rev. B, 74(1), p. 014110. [CrossRef]
Shen, S. , and Hu, S. , 2010, “ A Theory of Flexoelectricity With Surface Effect for Elastic Dielectrics,” J. Mech. Phys. Solids, 58(5), pp. 665–677. [CrossRef]
Deng, Q. , Liu, L. , and Sharma, P. , 2014, “ Flexoelectricity in Soft Materials and Biological Membranes,” J. Mech. Phys. Solids, 62, pp. 209–227. [CrossRef]
Deng, Q. , Kammoun, M. , Erturk, A. , and Sharma, P. , 2014, “ Nanoscale Flexoelectric Energy Harvesting,” Int. J. Solids Struct., 51(18), pp. 3218–3225. [CrossRef]
Liang, X. , Zhang, R. , Hu, S. , and Shen, S. , 2017, “ Flexoelectric Energy Harvesters Based on Timoshenko Laminated Beam Theory,” J. Intell. Mater. Syst. Struct., 28(5), pp. 2064–2073. [CrossRef]
Gharbi, M. , Sun, Z. H. , Sharma, P. , and White, K. , 2009, “ The Origins of Electromechanical Indentation Size Effect in Ferroelectrics,” Appl. Phys. Lett., 95(14), p. 142901. [CrossRef]
Gharbi, M. , Sun, Z. H. , Sharma, P. , White, K. , and El-Borgi, S. , 2011, “ Flexoelectric Properties of Ferroelectrics and the Nanoindentation Size-Effect,” Int. J. Solids Struct., 48(2), pp. 249–256. [CrossRef]
Cross, L. E. , 2006, “ Flexoelectric Effects: Charge Separation in Insulating Solids Subjected to Elastic Strain Gradients,” J. Mater. Sci., 41(1), pp. 53–63. [CrossRef]
Zhu, W. , Fu, J. Y. , Li, N. , and Cross, L. , 2006, “ Piezoelectric Composite Based on the Enhanced Flexoelectric Effects,” Appl. Phys. Lett., 89(19), p. 192904. [CrossRef]
Harden, J. , Mbanga, B. , Éber, N. , Fodor-Csorba, K. , Sprunt, S. , Gleeson, J. T. , and Jakli, A. , 2006, “ Giant Flexoelectricity of Bent-Core Nematic Liquid Crystals,” Phys. Rev. Lett., 97(15), p. 157802. [CrossRef] [PubMed]
Lu, H. , Bark, C.-W. , De Los Ojos, D. E. , Alcala, J. , Eom, C.-B. , Catalan, G. , and Gruverman, A. , 2012, “ Mechanical Writing of Ferroelectric Polarization,” Science, 336(6077), pp. 59–61. [CrossRef] [PubMed]
Lee, D. , Yang, S. M. , Yoon, J.-G. , and Noh, T. W. , 2012, “ Flexoelectric Rectification of Charge Transport in Strain-Graded Dielectrics,” Nano Lett., 12(12), pp. 6436–6440. [CrossRef] [PubMed]
Kim, M. , Ham, H. G. , Choi, H.-S. , Bos, P. J. , Yang, D.-K. , Lee, J. H. , and Lee, S. H. , 2017, “ Flexoelectric In-Plane Switching (IPS) Mode With Ultra-High-Transmittance, Low-Voltage, Low-Frequency, and a Flicker-Free Image,” Opt. Express, 25(6), pp. 5962–5971. [CrossRef] [PubMed]
Ahluwalia, R. , Tagantsev, A. K. , Yudin, P. , Setter, N. , Ng, N. , and Srolovitz, D. J. , 2014, “ Influence of Flexoelectric Coupling on Domain Patterns in Ferroelectrics,” Phys. Rev. B, 89(17), p. 174105. [CrossRef]
Chen, H. , Soh, A. , and Ni, Y. , 2014, “ Phase Field Modeling of Flexoelectric Effects in Ferroelectric Epitaxial Thin Films,” Acta Mech., 225(4–5), p. 1323. [CrossRef]
Chen, W. , Zheng, Y. , Feng, X. , and Wang, B. , 2015, “ Utilizing Mechanical Loads and Flexoelectricity to Induce and Control Complicated Evolution of Domain Patterns in Ferroelectric Nanofilms,” J. Mech. Phys. Solids, 79, pp. 108–133. [CrossRef]
Abdollahi, A. , Peco, C. , Millán, D. , Arroyo, M. , and Arias, I. , 2014, “ Computational Evaluation of the Flexoelectric Effect in Dielectric Solids,” J. Appl. Phys., 116(9), p. 093502. [CrossRef]
Abdollahi, A. , Millán, D. , Peco, C. , Arroyo, M. , and Arias, I. , 2015, “ Revisiting Pyramid Compression to Quantify Flexoelectricity: A Three-Dimensional Simulation Study,” Phys. Rev. B, 91(10), p. 104103. [CrossRef]
Yvonnet, J. , and Liu, L. , 2017, “ A Numerical Framework for Modeling Flexoelectricity and Maxwell Stress in Soft Dielectrics at Finite Strains,” Comput. Methods Appl. Mech. Eng., 313, pp. 450–482. [CrossRef]
Xia, Z. C. , and Hutchinson, J. W. , 1996, “ Crack Tip Fields in Strain Gradient Plasticity,” J. Mech. Phys. Solids, 44(10), pp. 1621–1648. [CrossRef]
Shu, J. , and Fleck, N. , 1998, “ The Prediction of a Size Effect in Microindentation,” Int. J. Solids Struct., 35(13), pp. 1363–1383. [CrossRef]
Shu, J. Y. , King, W. E. , and Fleck, N. A. , 1999, “ Finite Elements for Materials With Strain Gradient Effects,” Int. J. Numer. Methods Eng., 44(3), pp. 373–391. [CrossRef]
Amanatidou, E. , and Aravas, N. , 2002, “ Mixed Finite Element Formulations of Strain-Gradient Elasticity Problems,” Comput. Methods Appl. Mech. Eng., 191(15), pp. 1723–1751. [CrossRef]
Darrall, B. T. , Hadjesfandiari, A. R. , and Dargush, G. F. , 2015, “ Size-Dependent Piezoelectricity: A 2D Finite Element Formulation for Electric Field-Mean Curvature Coupling in Dielectrics,” Eur. J. Mech. A Solids, 49, pp. 308–320. [CrossRef]
Deng, F. , Deng, Q. , Yu, W. , and Shen, S. , 2017, “ Mixed Finite Elements for Flexoelectric Solids,” ASME J. Appl. Mech., 84(8), p. 081004. [CrossRef]
Ghasemi, H. , Park, H. S. , and Rabczuk, T. , 2017, “ A Level-Set Based IGA Formulation for Topology Optimization of Flexoelectric Materials,” Comput. Methods Appl. Mech. Eng., 313, pp. 239–258. [CrossRef]
Nanthakumar, S. , Zhuang, X. , Park, H. S. , and Rabczuk, T. , 2017, “ Topology Optimization of Flexoelectric Structures,” J. Mech. Phys. Solids, 105, pp. 217–234. [CrossRef]
Deng, Q. , 2017, “ Size-Dependent Flexoelectric Response of a Truncated Cone and the Consequent Ramifications for the Experimental Measurement of Flexoelectric Properties,” ASME J. Appl. Mech., 84(10), p. 101007. [CrossRef]
Hu, S. , and Shen, S. , 2010, “ Variational Principles and Governing Equations in Nano-Dielectrics With the Flexoelectric Effect,” Sci. China Phys. Mech., 53(8), pp. 1497–1504. [CrossRef]


Grahic Jump Location
Fig. 1

Sketch of a hexahedral element. The element has 27 nodes, eight corner nodes (marked in square block) and 19 other nodes (marked in dot) which include 12 edge-centered nodes, six surface-centered nodes, and a volume-centered node.

Grahic Jump Location
Fig. 2

Model of spherical shell subjected to inner/outer pressure pi/po. Inner and outer radius of the sphere are ρi and ρo.

Grahic Jump Location
Fig. 3

Finite element model for the 1/8 spherical shell. There are 6000 hexahedral elements in total, 20 elements on radius, and 300 elements on spherical surface. Symmetric boundary conditions are used in three symmetric surface, (x = 0) plane, (y = 0) plane, and (z = 0) plane.

Grahic Jump Location
Fig. 4

Comparison of FEM results with analytical solutions. (a) FEM result and analytical solution of radial displacement uρ versus radius. (b) FEM and analytical result of electric potential φ versus radius ρ. All the FEM results are adopted from the nodal DOF on the sphere's centered line (x = y = z).

Grahic Jump Location
Fig. 5

(a) FEM result and analytical solution of radial displacement uρ versus radius ρ for different flexoelectric coefficients. (b) Analytical result of radial displacement uρ at inner surface versus Inner pressure pi for different flexoelectric coefficients.

Grahic Jump Location
Fig. 6

Sketch of dielectric material with micropyramid structures

Grahic Jump Location
Fig. 7

(a) Schematic of nanopyramid subjected to uniform pressure at top surface. At the bottom of the model, electric potential and displacement component at height direction are set to zero. (b) Grid information in simulation. There are 2800 elements and 151,357 DOFs in total. Symmetric boundary conditions are used in symmetric surface, (x = 0) plane, (y = 0) plane.

Grahic Jump Location
Fig. 8

(a) Color map of electric potential generated by flexoelectricity and (b) variation of electric potential and strain (εzz) versus height

Grahic Jump Location
Fig. 9

(a) Variation of effective piezoelectric modulus versus flexoelectric coefficients for different size of microstructure and (b) variation of effective piezoelectric modulus versus the size of microstructure for different flexoelectric coefficients



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In