Research Papers

Interfacial Delamination of Inorganic Films on Viscoelastic Substrates

[+] Author and Article Information
Yin Huang, Jianghong Yuan, Yingchao Zhang

Department of Engineering Mechanics,
Tsinghua University,
Beijing 100084, China;
Center for Mechanics and Materials,
Tsinghua University,
Beijing 100084, China

Xue Feng

Department of Engineering Mechanics,
Tsinghua University,
Beijing 100084, China;
Center for Mechanics and Materials,
Tsinghua University,
Beijing 100084, China
e-mail: fengxue@tsinghua.edu.cn

1Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received April 21, 2016; final manuscript received June 17, 2016; published online August 3, 2016. Editor: Yonggang Huang.

J. Appl. Mech 83(10), 101005 (Aug 03, 2016) (9 pages) Paper No: JAM-16-1200; doi: 10.1115/1.4034116 History: Received April 21, 2016; Revised June 17, 2016

The performance of flexible/stretchable electronics may be significantly reduced by the interfacial delamination due to the large mismatch at the interface between stiff films and soft substrates. Based on the theory of viscoelasticity, a cracked composite beam model is proposed in this paper to analyze the delamination of an elastic thin film from a viscoelastic substrate. The time-varying neutral plane of the composite beam is derived analytically, and then the energy release rate of the interfacial crack is obtained from the Griffith's theory. Further, three different states of the crack propagation under constant external loadings are predicted, which has potential applications on the structural design of inorganic flexible/stretchable electronics.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Ko, H. C. , Stoykovich, M. P. , Song, J. , Malyarchuk, V. , Choi, W. M. , Yu, C.-J. , Geddes, J. B., III , Xiao, J. , Wang, S. , Huang, Y. , and Rogers, J. A. , 2008, “ A Hemispherical Electronic Eye Camera Based on Compressible Silicon Optoelectronics,” Nature, 454(7205), pp. 748–753. [CrossRef] [PubMed]
Song, Y. M. , Xie, Y. , Malyarchuk, V. , Xiao, J. , Jung, I. , Choi, K.-J. , Liu, Z. , Park, H. , Lu, C. , Kim, R.-H. , Li, R. , Crozier, K. B. , Huang, Y. , and Rogers, J. A. , 2013, “ Digital Cameras With Designs Inspired by the Arthropod Eye,” Nature, 497(7447), pp. 95–99. [CrossRef] [PubMed]
Chen, Y. , Lu, B. , Chen, Y. , and Feng, X. , 2015, “ Breathable and Stretchable Temperature Sensors Inspired by Skin,” Sci. Rep., 5, p. 11505. [CrossRef] [PubMed]
Kim, D.-H. , Lu, N. , Ma, R. , Kim, Y.-S. , Kim, R.-H. , Wang, S. , Wu, J. , Won, S. M. , Tao, H. , Islam, A. , Yu, K. J. , Kim, T.-I. , Chowdhury, R. , Ying, M. , Xu, L. , Li, M. , Chung, H.-J. , Keum, H. , McCormick, M. , Liu, P. , Zhang, Y.-W. , Omenetto, F. G. , Huang, Y. , Coleman, T. , and Rogers, J. A. , 2011, “ Epidermal Electronics,” Science, 333(6044), pp. 838–843. [CrossRef] [PubMed]
Cheng, H. Y. , and Wang, S. D. , 2013, “ Mechanics of Interfacial Delamination in Epidermal Electronics Systems,” ASME J. Appl. Mech., 81(4), p. 044501. [CrossRef]
Liu, Z. , Cheng, H. , and Wu, J. , 2014, “ Mechanics of Solar Module on Structured Substrates,” ASME J. Appl. Mech., 81(6), p. 064502. [CrossRef]
Shi, X. , Xu, R. , Li, Y. , Zhang, Y. , Ren, Z. , Gu, J. , Rogers, J. A. , and Huang, Y. , 2014, “ Mechanics Design for Stretchable, High Areal Coverage GaAs Solar Module on an Ultrathin Substrate,” ASME J. Appl. Mech., 81(12), p. 124502. [CrossRef]
Shi, Y. , Dagdeviren, C. , Rogers, J. A. , Gao, C. F. , and Huang, Y. , 2015, “ An Analytic Model for Skin Modulus Measurement Via Conformal Piezoelectric Systems,” ASME J. Appl. Mech., 82(9), p. 091007. [CrossRef]
Yuan, J. H. , Shi, Y. , Pharr, M. , Feng, X. , Rogers, J. A. , and Huang, Y. , 2016, “ A Mechanics Model for Sensors Imperfectly Bonded to the Skin for Determination of the Young's Moduli of Epidermis and Dermis,” ASME J. Appl. Mech., 83(9), p. 084501. [CrossRef]
Lu, B. , Chen, Y. , Ou, D. , Chen, H. , Diao, L. , Zhang, W. , Zheng, J. , Ma, W. , Sun, L. , and Feng, X. , 2015, “ Ultra-Flexible Piezoelectric Devices Integrated With Heart to Harvest the Biomechanical Energy,” Sci. Rep., 5, p. 16065. [CrossRef] [PubMed]
Zhang, Y. Y. , Chen, Y. S. , Lu, B. W. , Lü, C. F. , and Feng, X. , 2016, “ Electromechanical Modeling of Energy Harvesting From the Motion of Left Ventricle in Closed Chest Environment,” ASME J. Appl. Mech., 83(6), p. 061007. [CrossRef]
Khang, D. Y. , Jiang, H. Q. , Huang, Y. , and Rogers, J. A. , 2006, “ A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates,” Science, 311(5758), pp. 208–212. [CrossRef] [PubMed]
Kim, D. H. , Lu, N. S. , Huang, Y. G. , and Rogers, J. A. , 2012, “ Materials for Stretchable Electronics in Bioinspired and Biointegrated Devices,” Mrs Bull., 37(3), pp. 226–235. [CrossRef]
Rogers, J. A. , and Huang, Y. G. , 2009, “ A Curvy, Stretchy Future for Electronics,” Proc. Natl. Acad. Sci. U. S. A., 106(27), pp. 10875–10876. [CrossRef] [PubMed]
Wang, Y. , Feng, X. , Lu, B. W. , and Wang, G. F. , 2013, “ Surface Effects on the Mechanical Behavior of Buckled Thin Film,” ASME J. Appl. Mech., 80(2), p. 021002. [CrossRef]
Shi, Y. , Rogers, J. A. , Gao, C. F. , and Huang, Y. , 2014, “ Multiple Neutral Axes in Bending of a Multiple-Layer Beam With Extremely Different Elastic Properties,” ASME J. Appl. Mech., 81(11), p. 114501. [CrossRef]
Meng, X. H. , Liu, B. Y. , Wang, Y. , Zhang, T. H. , and Xiao, J. L. , 2016, “ Third-Order Polynomials Model for Analyzing Multilayer Hard/Soft Materials in Flexible Electronics,” ASME J. Appl. Mech., 83(8), p. 081011. [CrossRef]
Dai, L. C. , Feng, X. , Liu, B. , and Fang, D. N. , 2010, “ Interfacial Slippage of Inorganic Electronic Materials on Plastic Substrates,” Appl. Phys. Lett., 97(22), p. 221903. [CrossRef]
Huang, Y. , Feng, X. , and Qu, B. R. , 2011, “ Slippage Toughness Measurement of Soft Interface Between Stiff Thin Films and Elastomeric Substrate,” Rev. Sci. Instrum., 82(10), p. 104704. [CrossRef] [PubMed]
Park, S. I. , Ahn, J. H. , Feng, X. , Wang, S. D. , Huang, Y. G. , and Rogers, J. A. , 2008, “ Theoretical and Experimental Studies of Bending of Inorganic Electronic Materials on Plastic Substrates,” Adv. Funct. Mater., 18(18), pp. 2673–2684. [CrossRef]
Hutchinson, J. W. , and Suo, Z. , 1992, “ Mixed Mode Cracking in Layered Materials,” Adv. Appl. Mech., 29, pp. 63–191.
Chen, H. , Feng, X. , and Chen, Y. , 2014, “ Slip Zone Model for Interfacial Failures of Stiff Film/Soft Substrate Composite System in Flexible Electronics,” Mech. Mater., 79, pp. 35–44. [CrossRef]
Chen, H. , Lu, B. W. , Lin, Y. , and Feng, X. , 2014, “ Interfacial Failure in Flexible Electronic Devices,” IEEE Electron. Device Lett., 35(1), pp. 132–134. [CrossRef]
Liu, H. M. , Liu, Z. X. , Xu, Z. L. , Yin, Z. P. , Huang, Y. A. , and Chen, J. K. , 2015, “ Competing Fracture of Thin-Chip Transferring From/Onto Prestrained Compliant Substrate,” ASME J. Appl. Mech., 82(10), p. 101012. [CrossRef]
Christensen, R. M. , 1980, “ A Rate-Dependent Criterion for Crack Growth,” Int. J. Fract., 16(5), pp. R233–R237. [CrossRef]
Schapery, R. A. , 1975, “ A Theory of Crack Initiation and Growth in Viscoelastic Media,” Int. J. Fract., 11(1), pp. 141–159. [CrossRef]
Hui, C. Y. , Xu, D. B. , and Kramer, E. J. , 1992, “ A Fracture Model for a Weak Interface in a Viscoelastic Material (Small Scale Yielding Analysis),” J. Appl. Phys., 72(8), pp. 3294–3304. [CrossRef]
Feng, X. , Cheng, H. Y. , Bowen, A. M. , Carlson, A. W. , Nuzzo, R. G. , and Rogers, J. A. , 2013, “ A Finite-Deformation Mechanics Theory for Kinetically Controlled Transfer Printing,” ASME J. Appl. Mech., 80(6), p. 061023. [CrossRef]
Srinivas, M. V. , and Ravichandran, G. , 1994, “ Interfacial Crack Propagation in a Thin Viscoelastic Film Bonded to an Elastic Substrate,” Int. J. Fract., 65(1), pp. 31–47. [CrossRef]
Christensen, R. , 2012, Theory of Viscoelasticity: An Introduction, Academic Press, New York.
Huet, C. , 1992, “ Minimum Theorems for Viscoelasticity,” Eur. J. Mech. A-Solids, 11(5), pp. 653–684.
Griffith, A. A. , 1921, “ The Phenomena of Rupture and Flow in Solids,” Philos. Trans. Ser. A, 221, pp. 163–198. [CrossRef]


Grahic Jump Location
Fig. 1

Schematic diagram of the elastic-film/viscoelastic-substrate system with interfacial delamination under the constant axial force and bending moment

Grahic Jump Location
Fig. 3

Variation of the dimensionless neutral plane with the dimensionless loading time: (a) for different values of β2 with λ=β1=1 under N0=0 or M0=0; and (b) for different loading ratios with λ=β1=1 and β2=10

Grahic Jump Location
Fig. 6

Three different states of the interfacial crack propagation under N0=0 in the viscoelastic composite beam with a constant interfacial fracture toughness Gc

Grahic Jump Location
Fig. 2

Comparison curves of the time-varying neutral plane under N0=0 between our analytical solution (“analytical”) and the finite-element results (“FEM”): (a) for different stiffness ratios with λ=1 and β1=β2; and (b) for different thickness ratios with β1=β2=1

Grahic Jump Location
Fig. 4

Dimensionless time-varying energy release rate of the cracked composite beam subjected to N0 or M0 for different values of β2 with λ=β1=1.0×10−6

Grahic Jump Location
Fig. 5

Dimensionless time-varying energy release rate of the cracked composite beam subjected to M0: (a) for different values of β1=β2 with λ=1.0×10−6; and (b) for different values of λ with β1=β2=1.0×10−6



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In