Research Papers

Simulating Size and Volume Fraction-Dependent Strength and Ductility of Nanotwinned Composite Copper

[+] Author and Article Information
Linli Zhu

Department of Engineering Mechanics,
Zhejiang University, and Key Laboratory of Soft
Machines and Smart Devices
of Zhejiang Province,
Hangzhou 310027,
Zhejiang Province, China
e-mail: llzhu@zju.edu.cn

Xiang Guo

School of Mechanical Engineering,
Tianjin University, and Tianjin Key Laboratory
of Nonlinear Dynamics and Control,
Tianjin 300072, China

Haihui Ruan

Department of Mechanical Engineering,
The Hong Kong Polytechnic University,
Kowloon, Hong Kong, China

1Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received December 22, 2015; final manuscript received April 28, 2016; published online May 11, 2016. Assoc. Editor: A. Amine Benzerga.

J. Appl. Mech 83(7), 071009 (May 11, 2016) (8 pages) Paper No: JAM-15-1694; doi: 10.1115/1.4033519 History: Received December 22, 2015; Revised April 28, 2016

This work presents a micromechanical model to investigate mechanical properties of nanotwinned dual-phase copper, consisting of the coarse grained phase and the nanotwinned phase. Both strengthening mechanisms of nanotwinning and the contributions of nanovoids/microcracks have been taken into account in simulations. With the aid of modified mean-field approach, the stress–strain relationship is derived by combining the constitutive relations of the coarse grained phase and the nanotwinned phase. Numerical results show that the proposed model enables us to describe the mechanical properties of the nanotwinned composite copper, including both yield strength and ductility. The calculations based on the proposed model agree well with the results from finite element method (FEM). The predicted yield strength and ductility are sensitive to the twin spacing, grain size, as well as the volume fractions of phases in this composite copper. These results will benefit the optimization of both strength and ductility by controlling constituent fractions and the size of the microstructures in metallic materials.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Weertman, J. R. , Farkas, D. , Hemker, K. , Kung, H. , Mayo, M. , Mitra, R. , Van Swygenhoven, H. , 1999, “ Structure and Mechanical Behavior of Bulk Nanocrystalline Materials,” Mater. Res. Soc. Bull., 24(2), pp. 44–50. [CrossRef]
Kumar, K. S. , Van Swygenhoven, H. , and Suresh, S. , 2003, “ Mechanical Behavior of Nanocrystalline Metals and Alloys,” Acta Mater., 51(19), pp. 5743–5774. [CrossRef]
Zhu, T. , and Li, J. , 2010, “ Ultra-Strength Materials,” Prog. Mater. Sci., 55(7), pp. 710–757. [CrossRef]
Suryanarayana, C. , 2012, “ Mechanical Behavior of Emerging Materials,” Mater. Today, 15(11), pp. 486–496. [CrossRef]
Zhu, Y. T. , and Liao, X. Z. , 2004, “ Nanostructured Metals: Retaining Ductility,” Nat. Mater., 3(6), pp. 351–352. [CrossRef] [PubMed]
Meyers, M. A. , Mishra, A. , and Benson, D. J. , 2006, “ Mechanical Properties of Nanocrystalline Materials,” Prog. Mater. Sci., 51(4), pp. 427–556. [CrossRef]
Ritchie, R. O. , 2011, “ The Conflicts Between Strength and Toughness,” Nat. Mater., 10(11), pp. 817–822. [CrossRef] [PubMed]
Kou, H. N. , Lu, J. , and Li, Y. , 2014, “ High-Strength and High-Ductility Nanostructured and Amorphous Metallic Materials,” Adv. Mater., 26(31), pp. 5518–5524. [CrossRef] [PubMed]
Lu, L. , Shen, Y. F. , Chen, X. H. , Qian, L. H. , and Lu, K. , 2004, “ Ultrahigh Strength and High Electrical Conductivity in Copper,” Science, 304(5669), pp. 422–426. [CrossRef] [PubMed]
Dao, M. , Lu, L. , Asaro, R. J. , De Hosson, J. T. M. , and Ma, E. , 2007, “ Toward a Quantitative Understanding of Mechanical Behavior of Nanocrystalline Metals,” Acta Mater., 55(12), pp. 4041–4065. [CrossRef]
Wang, Y. M. , Chen, M. W. , Zhou, F. H. , and Ma, E. , 2002, “ Extraordinarily High Tensile Ductility in a Nanostructured Metal,” Nature, 419(6910), pp. 912–915. [CrossRef] [PubMed]
Zhao, Y. H. , Topping, T. , Bingert, J. F. , Thornton, J. J. , Dangelewicz, A. M. , Li, Y. , Liu, W. , Zhu, Y. , Zhou, Y. , and Lavernia, E. J. , 2008, “ High Tensile Ductility and Strength in Bulk Nanostructured Nickel,” Adv. Mater., 20(16), pp. 3028–3033. [CrossRef]
Li, Y. S. , Zhang, Y. , Tao, N. R. , and Lu, K. , 2008, “ Effect of Thermal Annealing on Mechanical Properties of a Nanostructured Copper Prepared by Means of Dynamic Plastic Deformation,” Scr. Mater., 59(4), pp. 475–478. [CrossRef]
Dirras, G. , Gubicza, J. , Bui, Q. H. , and Szilagyi, T. , 2010, “ Microstructure and Mechanical Characteristics of Bulk Polycrystalline Ni Consolidated From Blends of Powders With Different Particle Size,” Mater. Sci. Eng. A., 527(4–5), pp. 1206–1214. [CrossRef]
Lu, L. , Chen, X. , Huang, X. , and Lu, K. , 2009, “ Revealing the Maximum Strength in Nano-Twinned Copper,” Science, 323(5914), pp. 607–610. [CrossRef] [PubMed]
Lu, K. , Lu, L. , and Suresh, S. , 2009, “ Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale,” Science, 324(5925), pp. 349–352. [CrossRef] [PubMed]
Chen, A. Y. , Ruan, H. H. , Wang, J. , Chan, H. L. , Wang, Q. , Li, Q. , and Lu, J. , 2011, “ The Influence of Strain Rate on the Microstructure Transition of 304 Stainless Steel,” Acta Mater, 59(9), pp. 3697–3709. [CrossRef]
Chen, A. Y. , Li, D. F. , Zhang, J. B. , Song, H. W. , and Lu, J. , 2008, “ Make Nanostructured Metal Exceptionally Tough by Introducing Non-Localized Fracture Behaviors,” Scr. Mater., 59(6), pp. 579–582. [CrossRef]
Lu, K. , Yan, F. K. , Wang, H. T. , and Tao, N. R. , 2012, “ Strengthening Austenitic Steels by Using Nanotwinned Austenitic Grains,” Scr. Mater., 66(11), pp. 878–883. [CrossRef]
Yan, F. K. , Liu, G. Z. , Tao, N. R. , and Lu, K. , 2012, “ Strength and Ductility of 316L Austenitic Stainless Steel Strengthened by Nano-Scale Twin Bundles,” Acta Mater., 60(3), pp. 1059–1071. [CrossRef]
Yan, F. K. , Tao, N. R. , Archie, F. , Gutierrez-Urrutia, I. , Raabe, D. , and Lu, K. , 2014, “ Deformation Mechanisms in an Austenitic Single-Phase Duplex Microstructured Steel With Nanotwinned Grains,” Acta Mater., 81, pp. 487–500. [CrossRef]
Joshi, S. P. , Ramesh, K. T. , Han, B. Q. , and Lavernia, E. J. , 2006, “ Modeling the Constitutive Response of Bimodal Metals,” Metall. Mater. Trans. A, 37(8), pp. 2397–23404. [CrossRef]
Berbenni, S. , Favier, V. , and Berveiller, M. , 2007, “ Impact of the Grain Size Distribution on the Yield Stress of Heterogeneous Materials,” Int. J. Plast., 23(1), pp. 114–142. [CrossRef]
Ramtani, S. , Dirras, G. , and Bui, H. Q. , 2010, “ A Bimodal Bulk Ultra-Fine-Grained Nickel: Experimental and Micromechanical Investigations,” Mech. Mater., 42(5), pp. 522–536. [CrossRef]
Zhu, L. L. , and Lu, J. , 2012, “ Modelling the Plastic Deformation of Nanostructured Metals With Bimodal Grain Size Distribution,” Int. J. Plast., 30–31, pp. 166–184. [CrossRef]
Zhu, L. L. , Shi, S. Q. , Lu, K. , and Lu, J. , 2012, “ A Statistical Model for Predicting the Mechanical Properties of Nanostructured Metals With Bimodal Grain Size Distribution,” Acta Mater., 60(16), pp. 5762–5772. [CrossRef]
Guo, X. , Ji, R. , Weng, G. J. , Zhu, L. L. , and Lu, J. , 2014, “ Micromechanical Simulation of Fracture Behavior of Bimodal Nanostructured Metals,” Mater. Sci. Eng. A., 618, pp. 479–489. [CrossRef]
Guo, X. , Dai, X. Y. , Weng, G. J. , Zhu, L. L. , and Lu, J. , 2014, “ Numerical Investigation of Fracture Behavior of Nanostructured Cu With Bimodal Grain Size Distribution,” Acta Mech., 225(4), pp. 1093–1106. [CrossRef]
Guo, X. , Ji, R. , Weng, G. J. , Zhu, L. L. , and Lu, J. , 2014, “ Computer Simulation of Strength and Ductility of Nanotwin-Strengthened Coarse-Grained Metals,” Modell. Simul. Mater. Sci. Eng., 22(7), p. 075014. [CrossRef]
Froseth, A. , Derlet, P. M. , and Van Swygenhoven, H. , 2004, “ Grown-In Twin Boundaries Affecting Deformation Mechanisms in NC-Metals,” Appl. Phys. Lett., 85(24), pp. 5863–5865. [CrossRef]
Wang, J. , and Huang, H. , 2006, “ Novel Deformation Mechanism of Twinned Nanowires,” Appl. Phys. Lett., 88(20), p. 203112. [CrossRef]
Li, X. Y. , Wei, Y. J. , Lu, L. , Lu, K. , and Gao, H. J. , 2010, “ Dislocation Nucleation Governed Softening and Maximum Strength in Nano-Twinned Metals,” Nature, 464(7290), pp. 877–880. [CrossRef] [PubMed]
You, Z. S. , Li, X. Y. , Gui, L. G. , Lu, Q. H. , Zhu, T. , Gao, H. J. , and Lu, L. , 2013, “ Plastic Anisotropy and Associated Deformation Mechanisms in Nanotwinned Metals,” Acta Mater., 61(1), pp. 217–227. [CrossRef]
Zhou, H. F. , and Gao, H. J. , 2015, “ A Plastic Deformation Mechanism by Necklace Dislocations Near Crack-Like Defects in Nanotwinned Metals,” ASME J. Appl. Mech., 82(7), p. 071015. [CrossRef]
Dao, M. , Lu, L. , Shen, Y. , and Suresh, S. , 2006, “ Strength, Strain-Rate Sensitivity and Ductility of Copper With Nanoscale Twins,” Acta Mater., 54(20), pp. 5421–5432. [CrossRef]
Jerusalem, A. , Dao, M. , Suresh, S. , and Radovitzky, R. , 2008, “ Three-Dimensional Model of Strength and Ductility of Polycrystalline Copper Containing Nanoscale Twins,” Acta Mater., 56(17), pp. 4647–4657. [CrossRef]
Mirkhani, H. , and Joshi, S. P. , 2011, “ Crystal Plasticity of Nanotwinned Microstructures: A Discrete Twin Approach for Copper,” Acta Mater., 59(14), pp. 5603–5617. [CrossRef]
Zhu, L. L. , Ruan, H. H. , Li, X. Y. , Dao, M. , Gao, H. J. , and Lu, J. , 2011, “ Modeling Grain Size Dependent Optimal Twin Spacing for Achieving Ultimate High Strength and Related High Ductility in Nanotwinned Metals,” Acta Mater., 59(14), pp. 5544–5557. [CrossRef]
Zhang, X. , Romanov, A. E. , and Aifantis, E. C. , 2015, “ A Simple Physically Based Phenomenological Model for the Strengthening/Softening Behavior of Nanotwinned Copper,” ASME J. Appl. Mech., 82(12), p. 121005. [CrossRef]
Huang, Y. , Qu, S. , Hwang, K. C. , Li, M. , and Gao, H. , 2004, “ A Conventional Theory of Mechanism-Based Strain Gradient Plasticity,” Int. J. Plast., 20(4–5), pp. 753–782. [CrossRef]
Zhu, L. L. , Qu, S. X. , Guo, X. , and Lu, J. , 2015, “ Analysis of the Twin Spacing and Grain Size Effects on Mechanical Properties in Hierarchically Nanotwinned Face-Centered Cubic Metals Based on a Mechanism-Based Plasticity Model,” J. Mech. Phys. Solid, 76, pp. 162–179. [CrossRef]
Kocks, U. F. , and Mecking, H. , 2003, “ The Physics and Phenomenology of Strain Hardening,” Prog. Mater. Sci., 48(3), pp. 171–273. [CrossRef]
Capolungo, L. , Jochum, C. , Cherkaoui, M. , and Qu, J. , 2005, “ Homogenization Method for Strength and Inelastic Behavior of Nanocrystalline Materials,” Int. J. Plast., 21(1), pp. 67–82. [CrossRef]
Sinclair, C. W. , Poole, W. J. , and Bréchet, Y. , 2006, “ A Model for the Grain Size Dependent Work Hardening of Copper,” Scr. Mater., 55(8), pp. 739–742. [CrossRef]
Bouaziz, O. , Allain, S. , and Scott, C. , 2008, “ Effect of Grain and Twin Boundaries on the Hardening Mechanisms of Twinning-Induced Plasticity Steel,” Scr. Mater., 58(6), pp. 484–487. [CrossRef]
Kachanov, M. , 1994, “ Elastic Solids With Many Cracks and Related Problems,” Adv. Appl. Mech., 30, pp. 259–445.
Han, B. Q. , Lee, Z. , Witkin, D. , Nutt, S. R. , and Lavernia, E. J. , 2005, “ Deformation Behavior of Bimodal Nanostructured 5083 Al Alloys,” Metall. Mater. Trans., 36(4), pp. 957–965. [CrossRef]
Lee, Z. H. , Radmilovic, V. , Ahn, B. , Lavernia, E. J. , and Nutt, S. R. , 2010, “ Tensile Deformation and Fracture Mechanism of Bulk Bimodal Ultrafine-Grained Al–Mg Alloy,” Metall. Mater. Trans. A, 41(4), pp. 795–801. [CrossRef]
Wang, H. , Nie, A. , Liu, J. , Wang, P. , Yang, W. , Chen, B. , Liu, H. , and Fu, M. , 2011, “ In Situ TEM Study on Crack Propagation in Nanoscale Au Thin Films,” Scr. Mater., 65(5), pp. 377–379. [CrossRef]
Bilay, A. , and Eshelby, J. D. , 1969, “ Dislocations and the Theory of Fracture,” Fracture, Vol. I, H. Liebowitz , ed., Academic Press, New York, pp. 99–182. [PubMed] [PubMed]
Gao, H. , Huang, Y. , Gumbsch, P. , and Rosakis, A. J. , 1999, “ On Radiation-Free Transonic Motion of Cracks and Dislocations,” J. Mech. Phys. Solids, 47(9), pp. 1941–1961. [CrossRef]
Liu, X. W. , and Lu, J. , “ High Strength and High Ductility Cu Obtained by Topologically Controlled Planar Heterogenous Structures,” Scr. Mater. (submitted).
Weng, G. J. , 1990, “ The Overall Elastoplastic Stress–Strain Relation of Dual-Phase Metals,” J. Mech. Phys. Solid, 38(3), pp. 419–441. [CrossRef]
Weng, G. J. , 2009, “ A Homogenization Scheme for the Plastic Properties of Nanocrystalline Materials,” Rev. Adv. Mater. Sci., 19(1–2), pp. 41–62.
Guo, X. , Ouyang, Q. D. , Weng, G. J. , and Zhu, L. L. , 2016, “ The Direct and Indirect Effect of Nanotwin Volume Fraction on the Strength and Ductility of Coarse-Grained Metals,” Mater. Sci. Eng. A, 657, pp. 234–243. [CrossRef]


Grahic Jump Location
Fig. 7

Stress–strain response of nanotwinned composite copper with different grain size in nanotwinned phase (a), and the yield strength (b) and failure strain (c) as the functions of the grain size dGTB

Grahic Jump Location
Fig. 1

Schematic drawings of the nanotwinned composite metals in the polycrystalline materials with the assumption of the composite model (a) and of nano/microscale defects such as the nano/microcracks arising during tensile testing (b)

Grahic Jump Location
Fig. 2

Comparison of the stress–strain relationship between the present simulations and FEM results [29,55] for nanotwinned composite copper. A, C, D, E, F represent the different distribution of nanotwinned phase in the composite copper, as indicated in Ref. [29,55]

Grahic Jump Location
Fig. 3

The stress–strain relationship of the nanotwinned composite copper with different reference density of nano/microcracks (a) and the failure strain as a function of the reference density R0 (b)

Grahic Jump Location
Fig. 4

Influence of the Weibull modulus on the stress–strain response of nanotwinned composite copper (a) and the failure strain varying with Weibull modulus M (b)

Grahic Jump Location
Fig. 5

Stress–strain response of nanotwinned composite copper with different volume fraction of the coarse grained phase (a), and the yield strength (b) and failure strain (c) varying with the volume fraction of coarse grains

Grahic Jump Location
Fig. 6

Stress–strain relationship of nanotwinned composite copper with different twin spacing (a), and the yield strength (b) and failure strain (c) as functions of the twin spacing



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In