Research Papers

Electromechanical Modeling of Energy Harvesting From the Motion of Left Ventricle in Closed Chest Environment

[+] Author and Article Information
Yangyang Zhang, Yisheng Chen

Department of Civil Engineering,
Zhejiang University,
Hangzhou 310058, China

Bingwei Lu

Department of Engineering Mechanics,
Tsinghua University,
Beijing 100084, China

Chaofeng Lü

Department of Civil Engineering,
Zhejiang University,
Hangzhou 310058, China;
Key Laboratory of Soft Machines and
Smart Devices of Zhejiang Province,
Zhejiang University,
Hangzhou 310027, China;
Soft Matter Research Center,
Zhejiang University,
Hangzhou 310027, China
e-mail: lucf@zju.edu.cn

Xue Feng

Department of Engineering Mechanics,
Tsinghua University,
Beijing 100084, China
e-mail: fengxue@mail.tsinghua.edu.cn

1Corresponding authors.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received February 22, 2016; final manuscript received March 10, 2016; published online March 29, 2016. Editor: Yonggang Huang.

J. Appl. Mech 83(6), 061007 (Mar 29, 2016) (7 pages) Paper No: JAM-16-1099; doi: 10.1115/1.4032994 History: Received February 22, 2016; Revised March 10, 2016

A piezoelectric mechanical energy harvesting (MEH) technique was recently demonstrated through in vivo experiment by harvesting energy from the motion of porcine left ventricle (LV) myocardial wall. This provides a new strategy of energy supply for operating implantable biomedical devices so as to avoid various shortcomings associated with battery energy. This paper resorts to an analytical electromechanical model for evaluating the efficiency of the piezoelectric MEH device especially of that used in closed chest environment. A nonlinear compressive spring model is proposed to account for the impeding effect of surrounding tissues on the device. Inputting the periodic variation of the LV volume as a loading condition to the device, numerical predictions for the electric outputs are obtained and compare well with experiments. A simple scaling law for the output electric power is established in terms of combined material, geometrical, circuit, and LV motion parameters. The results presented here may provide guidelines for the design of in vivo piezoelectric energy harvesting from motions of biological organs.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Owens, B. B. , 1986, Batteries for Implantable Biomedical Devices, Plenum Press, New York.
Ohm, O. J. , and Danilovic, D. , 1997, “ Improvements in Pacemaker Energy Consumption and Functional Capability: Four Decades of Progress,” Pacing Clin. Electrophysiol., 20(1), pp. 2–9. [CrossRef] [PubMed]
Korpas, D. , 2013, Implantable Cardiac Devices Technology, Springer, New York.
Mallela, V. S. , Ilankumaran, V. , and Rao, N. S. , 2004, “ Trends in Cardiac Pacemaker Batteries,” Indian Pacing Electrophysiol. J., 4(4), pp. 201–212. [PubMed]
Griffith, M. J. , Mounsey, J. P. , Bexton, R. S. , and Holden, M. , 1994, “ Mechanical, but Not Infective, Pacemaker Erosion May be Successfully Managed by Re-Implantation of Pacemakers,” Br. Heart J., 71(2), pp. 202–205. [CrossRef] [PubMed]
Wang, Z. L. , and Wang, X. , 2015, “ Nanogenerators and Piezotronics,” Nano Energy, 10(1016), pp. 1–2.
Boisseau, S. , Despesse, G. , and Seddik, B. A. , 2013, “ Nonlinear H-Shaped Springs to Improve Efficiency of Vibration Energy Harvesters,” ASME J. Appl. Mech., 80(6), p. 061013. [CrossRef]
Wu, Z. , Harne, R. L. , and Wang, K. W. , 2014, “ Energy Harvester Synthesis Via Coupled Linear-Bistable System With Multistable Dynamics,” ASME J. Appl. Mech., 81(6), p. 061005. [CrossRef]
Chen, L. Q. , and Jiang, W. A. , 2015, “ Internal Resonance Energy Harvesting,” ASME J. Appl. Mech., 82(3), p. 031004. [CrossRef]
Namli, O. C. , and Taya, M. , 2011, “ Design of Piezo-SMA Composite for Thermal Energy Harvester Under Fluctuating Temperature,” ASME J. Appl. Mech., 78(3), p. 031001. [CrossRef]
Yoon, J. , Baca, A. J. , Park, S. I. , Elvikis, P. , Geddes, J. B. , Li, L. , Kim, R. H. , Xiao, J. , Wang, S. , Motala, M. J. , Kim, T. , Ahn, B. Y. , Duoss, E. B. , Lewis, J. A. , Nuzzo, R. G. , Ferreira, P. M. , Huang, Y. , Rockett, A. , and Rogers, J. A. , 2008, “ Ultrathin Silicon Solar Microcells for Semitransparent, Mechanically Flexible and Microconcentrator Module Designs,” Nat. Mater., 7(11), pp. 907–915. [CrossRef] [PubMed]
Hansen, B. J. , Liu, Y. , Yang, R. , and Wang, Z. L. , 2010, “ Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and Biochemical Energy,” ACS Nano, 4(7), pp. 3647–3652. [CrossRef] [PubMed]
González, J. L. , Rubio, A. , and Moll, F. , 2002, “ Human Powered Piezoelectric Batteries to Supply Power to Wearable Electronic Devices,” Int. J. Soc. Mater. Eng. Resour., 10(1), pp. 34–40. [CrossRef]
Riemer, R. , and Shapiro, A. , 2011, “ Biomechanical Energy Harvesting From Human Motion: Theory, State of the Art, Design Guidelines, and Future Directions,” J. Neuroeng. Rehabil., 8(1), pp. 1–13. [CrossRef] [PubMed]
Anton, S. R. , and Sodano, H. A. , 2007, “ A Review of Power Harvesting Using Piezoelectric Materials (2003–2006),” Smart Mater. Struct., 16(3), pp. R1–R21. [CrossRef]
Abdi, H. , Mohajer, N. , and Nahavandi, S. , 2014, “ Human Passive Motions and a User-Friendly Energy Harvesting System,” J. Intell. Mater. Syst. Struct., 25(8), pp. 923–936. [CrossRef]
Sohn, J. W. , Choi, S. B. , and Lee, D. Y. , 2005, “ An Investigation on Piezoelectric Energy Harvesting for MEMS Power Sources,” Proc. Inst. Mech. Eng., Part C, 219(4), pp. 429–436. [CrossRef]
Li, Z. , Zhu, G. , Yang, R. , Wang, A. C. , and Wang, Z. L. , 2010, “ Muscle-Driven In Vivo Nanogenerator,” Adv. Mater., 22(23), pp. 2534–2537. [CrossRef] [PubMed]
Zhang, H. , Zhang, X. , Cheng, X. , Liu, Y. , Han, M. , Xue, X. , Wang, S. , Yang, F. , Smitha, A. S. , Zhang, H. , and Xu, Z. , 2015, “ A Flexible and Implantable Piezoelectric Generator Harvesting Energy From the Pulsation of Ascending Aorta: In Vitro and In Vivo Studies,” Nano Energy, 12, pp. 296–304. [CrossRef]
Rogers, J. A. , 2015, “ Electronics for the Human Body,” J. Am. Med. Assoc., 313(6), pp. 561–562. [CrossRef]
Dagdeviren, C. , Yang, B. D. , Su, Y. , Tran, P. L. , Joe, P. , Anderson, E. , Xia, J. , Doraiswamy, V. , Dehdashti, B. , Feng, X. , Lu, B. , Poston, R. , Khalpey, Z. , Ghaffari, R. , Huang, Y. , Slepian, M. J. , and Rogers, J. A. , 2014, “ Conformal Piezoelectric Energy Harvesting and Storage From Motions of the Heart, Lung, and Diaphragm,” Proc. Natl. Acad. Sci. U.S.A., 111(5), pp. 1927–1932. [CrossRef] [PubMed]
Lu, B. , Chen, Y. , Ou, D. , Chen, H. , Diao, L. , Zhang, W. , Zheng, J. , Ma, W. , Sun, L. , and Feng, X. , 2015, “ Ultra-Flexible Piezoelectric Devices Integrated With Heart to Harvest the Biomechanical Energy,” Sci. Rep., 5, p. 16065. [CrossRef] [PubMed]
Chen, Y. , Lu, B. , Ou, D. , and Feng, X. , 2015, “ Mechanics of Flexible and Stretchable Piezoelectrics for Energy Harvesting,” Sci. China: Phys., Mech. Astron., 58(9), pp. 1–13. [CrossRef]
Lu, B. , 2014, “ Flexible Piezoelectric/Ferroelectric Devices for Biomedical Application and Its Electromechanical Mechanism,” Ph.D. dissertation, Tsinghua University, Beijing.
Keten, S. , and Buehler, M. J. , 2010, “ Nanostructure and Molecular Mechanics of Spider Dragline Silk Protein Assemblies,” J. R. Soc., Interface, 7(53), pp. 1709–1721. [CrossRef]
Storm, C. , Pastore, J. J. , MacKintosh, F. C. , Lubensky, T. C. , and Janmey, P. A. , 2005, “ Nonlinear Elasticity in Biological Gels,” Nature, 435(7039), pp. 191–194. [CrossRef] [PubMed]
Destrade, M. , Gilchrist, M. D. , and Ogden, R. W. , 2010, “ Third-and Fourth-Order Elasticities of Biological Soft Tissues,” J. Acoust. Soc. Am., 127(4), pp. 2103–2106. [CrossRef] [PubMed]
Yin, J. , Yagüe, J. L. , Eggenspieler, D. , Gleason, K. K. , and Boyce, M. C. , 2012, “ Deterministic Order in Surface Micro-Topologies Through Sequential Wrinkling,” Adv. Mater., 24(40), pp. 5441–5446. [CrossRef] [PubMed]
Chen, Y. , Zhu, Y. , Chen, X. , and Liu, Y. , 2016, “ Mechanism of the Transition From In-Plane Buckling to Helical Buckling for a Stiff Nanowire on an Elastomeric Substrate,” ASME J. Appl. Mech., 83(4), p. 041011. [CrossRef]
Wang, Q. , and Zhao, X. , 2013, “ Phase Diagrams of Instabilities in Compressed Film-Substrate Systems,” ASME J. Appl. Mech., 81(5), p. 051004. [CrossRef]
Chen, C. , Tao, W. , Su, Y. , Wu, J. , and Song, J. , 2013, “ Lateral Buckling of Interconnects in a Noncoplanar Mesh Design for Stretchable Electronics,” ASME J. Appl. Mech., 80(4), p. 041031. [CrossRef]
Li, Y. , Song, J. , Fang, B. , and Zhang, J. , 2011, “ Surface Effects on the Postbuckling of Nanowires,” J. Phys. D: Appl. Phys., 44(42), p. 425304. [CrossRef]
Ding, H. J. , and Chen, W. Q. , 2001, Three Dimensional Problems of Piezoelasticity, Nova Science, New York.
Teichholz, L. E. , Kreulen, T. , Herman, M. V. , and Gorlin, R. , 1976, “ Problems in Echocardiographic Volume Determinations: Echocardiographic-Angiographic Correlations in the Presence or Absence of Asynergy,” Am. J. Cardiol., 37(1), pp. 7–11. [CrossRef] [PubMed]
Chinchoy, E. , Soule, C. L. , Houlton, A. J. , Gallagher, W. J. , Hjelle, M. A. , Laske, T. G. , Morissette, M. G. , and Iaizzo, P. A. , 2000, “ Isolated Four-Chamber Working Swine Heart Model,” Ann. Thorac. Surg., 70(5), pp. 1607–1614. [CrossRef] [PubMed]
Ekser, B. , Ezzelarab, M. , Hara, H. , van der Windt, D. J. , Wijkstrom, M. , Bottino, R. , Trucco, M. , and Cooper, D. K. , 2012, “ Clinical Xenotransplantation: The Next Medical Revolution,” Lancet, 379(9816), pp. 672–683. [CrossRef] [PubMed]
Cooper, D. K. , Gollackner, B. , and Sachs, D. H. , 2002, “ Will the Pig Solve the Transplantation Backlog,” Annu. Rev. Med., 53(1), pp. 133–147. [CrossRef] [PubMed]
Corsi, C. , Saracino, G. , Sarti, A. , and Lamberti, C. , 2002, “ Left Ventricular Volume Estimation for Real-Time Three-Dimensional Echocardiography,” IEEE Trans. Med. Imaging, 21(9), pp. 1202–1208. [CrossRef] [PubMed]
Lang, R. M. , Bierig, M. , Devereux, R. B. , Flachskampf, F. A. , Foster, E. , Pellikka, P. A. , Picard, M. H. , and Solomon, S. , 2006, “ Recommendations for Chamber Quantification,” Eur. Heart J.-Cardiovasc. Imaging, 7(2), pp. 79–108.
Lu, F. , Lee, H. P. , and Lim, S. P. , 2004, “ Modeling and Analysis of Micro Piezoelectric Power Generators for Micro-Electromechanical-Systems Applications,” Smart Mater. Struct., 13(1), pp. 57–63. [CrossRef]


Grahic Jump Location
Fig. 1

Schematic diagram of the PZT MEH device. Cross section of the device before and after deformation (a) and 3D vision of the device after deformation (b).

Grahic Jump Location
Fig. 2

Comparisons of the predicted real-time output voltage with the experimental measurements for a device subject to triangular mechanical loading

Grahic Jump Location
Fig. 3

Loading condition of the device when mounted on the porcine LV. Real-time volume of the porcine LV (a) and the corresponding end-to-end displacement of the device (b).

Grahic Jump Location
Fig. 4

Comparisons of the predicted and measured real-time output voltage with chest open when the device is mounted on the porcine LV

Grahic Jump Location
Fig. 5

Comparisons of the predicted and measured real-time output voltage with chest closed when the device is mounted on the porcine LV

Grahic Jump Location
Fig. 6

Dependence of the output power with chest closed and its relative decrement against that for open chest on the normalized stiffness coefficient of the surrounding tissues (KL03)/(Eshs)

Grahic Jump Location
Fig. 7

Dependence of the normalized effective voltage |μ¯33L0VRMS/βe¯31hpnszp| and normalized effective current |L0TIRMS/βnpe¯31Apzp| on the normalized parameter (npμ¯33ApR)/(nshpT)

Grahic Jump Location
Fig. 8

Scaling law for the normalized output power [(μ¯33L02T)/(β2e¯312zp2)] ⋅[Peff/(nsnpAphp)] and the normalized parameter (npμ¯33ApR)/(nshpT) for chest open ((KL03)/(Eshs)=0) and chest closed ((KL03)/(Eshs)=5)

Grahic Jump Location
Fig. 9

Scaling law for the normalized output power [(μ¯33L02T)/(β2e¯312zp2)] ⋅[Peff/(nsnpAphp)] and the normalized parameter (KL03)/(Eshs) for various (npμ¯33ApR)/(nshpT)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In