Research Papers

Modeling of Light-Driven Bending Vibration of a Liquid Crystal Elastomer Beam

[+] Author and Article Information
Kai Li

Department of Civil Engineering,
Anhui Jianzhu University,
Hefei, Anhui 230601, China
e-mail: kli@ahjzu.edu.cn

Shengqiang Cai

Department of Mechanical and
Aerospace Engineering,
University of California, San Diego,
La Jolla, CA 92093
e-mail: s3cai@ucsd.edu

1Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received September 8, 2015; final manuscript received November 18, 2015; published online December 14, 2015. Editor: Yonggang Huang.

J. Appl. Mech 83(3), 031009 (Dec 14, 2015) (6 pages) Paper No: JAM-15-1488; doi: 10.1115/1.4032073 History: Received September 08, 2015; Revised November 18, 2015

In this paper, we study light-driven bending vibration of a liquid crystal elastomer (LCE) beam. Inhomogeneous and time-dependent number fraction of photochromic liquid crystal molecules in cis state in an LCE beam is considered in our model. Using mode superposition method, we obtain semi-analytic form of light-driven bending vibration of the LCE beam. Our results show that periodic vibration or a statically deformed state can be induced by a static light source in the LCE beam, which depends on the light intensity and position of the light source. We also demonstrate that the amplitude of the bending vibration of the LCE beam can be regulated by tuning light intensity, damping factor of the beam, and thermal relaxation time from cis to trans state, while the frequency of the vibration in the beam mainly depends on the thermal relaxation time. The method developed in the paper can be important for designing light-driven motion structures and photomechanical energy conversion systems.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Dey, S. , Agra-Kooijman, D. M. , Ren, W. , McMullan, P. J. , Griffin, A. C. , and Kumar, S. , 2013, “ Soft Elasticity in Main Chain Liquid Crystal Elastomers,” Crystals, 3(2), pp. 363–390. [CrossRef]
Biggins, J. S. , Warner, M. , and Bhattacharya, K. , 2012, “ Elasticity of Polydomain Liquid Crystal Elastomers,” J. Mech. Phys. Solids, 60(4), pp. 573–590. [CrossRef]
Brown, A. W. , and Adams, J. M. , 2012, “ Negative Poisson’s Ratio and Semisoft Elasticity of Smectic-C Liquid-Crystal Elastomers,” Phys. Rev. E, 85(1), p. 011703. [CrossRef]
Adams, J. M. , and Warner, M. , 2005, “ Soft Elasticity in Smectic Elastomers,” Phys. Rev. E, 72(1), p. 011703. [CrossRef]
Corbett, D. , and Warner, M. , 2009, “ Changing Liquid Crystal Elastomer Ordering With Light—A Route to Opto-Mechanically Responsive Materials,” Liq. Cryst., 36(10–11), pp. 1263–1280. [CrossRef]
Dawson, N. J. , Kuzyk, M. G. , Neal, J. , Luchette, P. , and Palffy-Muhoray, P. , 2011, “ Modeling the Mechanisms of the Photomechanical Response of a Nematic Liquid Crystal Elastomer,” J. Opt. Soc. Am. B, 28(9), pp. 2134–2141. [CrossRef]
Wermter, H. , and Finkelmann, H. , 2001, “ Liquid Crystalline Elastomers as Artificial Muscles,” e-Polymers, 1(1), pp. 111–123. [CrossRef]
Petsch, S. , Rix, R. , Khatri, B. , Schuhladen, S. , Müller, P. , Zentel, R. , and Zappe, H. , 2015, “ Smart Artificial Muscle Actuators: Liquid Crystal Elastomers With Integrated Temperature Feedback,” Sensor. Actuat. A, 231, pp. 44–51. [CrossRef]
Xing, H. H. , Li, J. , Guo, J. B. , and Wei, J. , 2015, “ Bio-Inspired Thermal-Responsive Inverse Opal Films With Dual Structural Colors Based on Liquid Crystal Elastomer,” J. Mater. Chem. C, 3(17), pp. 4424–4430. [CrossRef]
Li, M. H. , and Keller, P. , 2006, “ Artificial Muscles Based on Liquid Crystal Elastomers,” Philos. Trans. R. Soc., A, 364(1847), pp. 2763–2777. [CrossRef]
Schmidtke, J. , Kniesel, S. , and Finkelmann, H. , 2005, “ Probing the Photonic Properties of a Cholesteric Elastomer Under Biaxial Stress,” Macromolecules, 38(4), pp. 1357–1363. [CrossRef]
Schmidtke, J. , Stille, W. , Finkelmann, H. , and Kim, S. T. , 2002, “ Laser Emission in a Dye Doped Cholesteric Polymer Network,” Adv. Mater., 14(10), pp. 746–749. [CrossRef]
Dawson, N. J. , Kuzyk, M. G. , Neal, J. , Luchette, P. , and Palffy-Muhoray, P. , 2011, “ Cascading of Liquid Crystal Elastomer Photomechanical Optical Devices,” Opt. Commun., 284(4), pp. 991–993. [CrossRef]
Shilov, S. V. , Skupin, H. , Kremer, F. , Skarp, K. , Stein, P. , and Finkelmann, H. , 1998, “ Segmental Motion of Ferroelectric Liquid Crystal Polymer and Elastomer During Electro-Optical Switching,” Proc. SPIE, 3318, pp. 62–67.
Krishnan, D. , and Johnson, H. T. , 2014, “ Light-Induced Deformation in a Liquid Crystal Elastomer Photonic Crystal,” J. Mech. Phys. Solids, 62, pp. 48–56. [CrossRef]
Li, M. E. , Lv, S. , and Zhou, J. X. , 2014, “ Photo-Thermo-Mechanically Actuated Bending and Snapping Kinetics of Liquid Crystal Elastomer Cantilever,” Smart Mater. Struct., 23(12), p. 125012. [CrossRef]
Dunn, M. L. , and Maute, K. , 2009, “ Photomechanics of Blanket and Patterned Liquid Crystal Elastomer Films,” Mech. Mater., 41(10), pp. 1083–1089. [CrossRef]
Dunn, M. L. , 2007, “ Photomechanics of Mono- and Polydomain Liquid Crystal Elastomer Films,” J. Appl. Phys., 102(1), p. 013506. [CrossRef]
Hauser, A. W. , Evans, A. A. , Na, J. H. , and Hayward, R. C. , 2015, “ Photothermally Reprogrammable Buckling of Nanocomposite Gel Sheets,” Angew. Chem., Int. Ed., 54(18), pp. 5434–5437. [CrossRef]
Camacho-Lopez, M. , Finkelmann, H. , Palffy-Muhoray, P. , and Shelley, M. , 2004, “ Fast Liquid Crystal Elastomer Swims Into the Dark,” Nat. Mater., 3(5), pp. 307–310. [CrossRef] [PubMed]
Nagele, T. , Hoche, R. , Zinth, W. , and Wachtveitl, J. , 1997, “ Femtosecond Photoisomerization of Cis-Azobenzene,” Chem. Phys. Lett., 272(5–6), pp. 489–495. [CrossRef]
Garcia-Amoros, J. , Nonell, S. , and Velasco, D. , 2011, “ Photo-Driven Optical Oscillators in the kHz Range Based on Push–Pull Hydroxyazopyridines,” Chem. Commun., 47(13), pp. 4022–4024. [CrossRef]
Hiscock, T. , Warner, M. , and Palffy-Muhoray, P. , 2011, “ Solar to Electrical Conversion Via Liquid Crystal Elastomers,” J. Appl. Phys., 109(10), p. 104506. [CrossRef]
Torras, N. , Zinoviev, K. E. , Marshall, J. E. , Terentjev, E. M. , and Esteve, J. , 2011, “ Bending Kinetics of a Photo-Actuating Nematic Elastomer Cantilever,” Appl. Phys. Lett., 99(25), p. 254102. [CrossRef]
Serak, S. , Tabiryan, N. , Vergara, R. , White, T. J. , Vaia, R. A. , and Bunning, T. J. , 2010, “ Liquid Crystalline Polymer Cantilever Oscillators Fueled by Light,” Soft Matter, 6(4), pp. 779–783. [CrossRef]
Shankar, M. R. , Smith, M. L. , Tondiglia, V. P. , Lee, K. M. , McConney, M. E. , Wang, D. H. , Tan, L. , and White, T. J. , 2013, “ Contactless, Photoinitiated Snap-Through in Azobenzene-Functionalized Polymers,” Proc. Natl. Acad. Sci. U.S.A., 110(47), pp. 18792–18797. [CrossRef] [PubMed]
White, T. J. , Tabiryan, N. V. , Serak, S. V. , Hrozhyk, U. A. , Tondiqlia, V. P. , Koerner, H. , Vaia, R. A. , and Bunning, T. J. , 2008, “ A High Frequency Photodriven Polymer Oscillator,” Soft Matter, 4(9), pp. 1796–1798. [CrossRef]
Lee, K. M. , Smith, M. L. , Koerner, H. , Tabiryan, N. , Vaia, R. A. , Bunning, T. J. , and White, T. J. , 2011, “ Photodriven, Flexural–Torsional Oscillation of Glassy Azobenzene Liquid Crystal Polymer Networks,” Adv. Funct. Mater., 21(15), pp. 2913–2918. [CrossRef]
Shimamura, A. , Priimagi, A. , Mamiya, J. I. , Kinoshita, M. , Ikeda, T. , and Shishido, A. , 2011, “ Photoinduced Bending Upon Pulsed Irradiation in Azobenzene-Containing Crosslinked Liquid-Crystalline Polymers,” J. Nonlinear Opt. Phys., 20(4), pp. 405–413. [CrossRef]
Corbett, D. , and Warner, M. , 2007, “ Linear and Nonlinear Photoinduced Deformations of Cantilevers,” Phys. Rev. Lett., 99(17), p. 174302. [CrossRef] [PubMed]
Marshall, J. E. , and Terentjev, E. M. , 2013, “ Photo-Sensitivity of Dye-Doped Liquid Crystal Elastomers,” Soft Matter, 9(35), pp. 8547–8551. [CrossRef]
Finkelmann, H. , Nishikawa, E. , Pereira, G. G. , and Warner, M. , 2001, “ A New Opto-Mechanical Effect in Solids,” Phys. Rev. Lett., 87(1), p. 015501. [CrossRef] [PubMed]
Hogan, P. M. , Tajbakhsh, A. R. , and Terentjev, E. M. , 2002, “ UV Manipulation of Order and Macroscopic Shape in Nematic Elastomers,” Phys. Rev. E, 65(4), p. 041720. [CrossRef]
Jin, L. H. , Lin, Y. , and Huo, Y. Z. , 2011, “ A Large Deflection Light-Induced Bending Model for Liquid Crystal Elastomers Under Uniform or Non-Uniform Illumination,” Int. J. Solids Struct., 48(22–23), pp. 3232–3242. [CrossRef]
Thomson, W. T. , and Dahleh, M. D. , 1998, Theory of Vibration With Applications, 5th ed., Prentice Hall, Upper Saddle River, NJ.


Grahic Jump Location
Fig. 1

Schematic model of an LCE cantilever beam with length l and thickness h exposed to a static light source. The bending stiffness of the beam is B=Eh3/12(1−ν2) with modulus E and Poisson’s ratio ν, and the mass density of the beam is ρ. The damping factor is α. In the model, the light source is assumed to be far away from the LCE beam.

Grahic Jump Location
Fig. 3

Influence of light source position on the light-driven vibration of the LCE beam. The positions of the light source are: (a) w¯0=0.1, (b) w¯0=0.01, and (c) w¯0=0.001. Light source position can also determine whether the light can induce the beam vibration. In the calculation, we fix the parameters: thermal relaxation time of the cis to trans state T¯0=0.2, damping factor α¯=1, and light intensity I¯0=0.25.

Grahic Jump Location
Fig. 6

Snapshots of light-induced bending vibration of the LCE beam, for Figs. 5(a) and 5(b). (a) For thermal relaxation time of the cis to trans state T¯0=0.3, first-order vibration mode in the beam is driven by the light. (b) For thermal relaxation time of the cis to trans state T¯0=0.1, second-order vibration mode in the beam is driven by the light.

Grahic Jump Location
Fig. 2

Two states of the LCE beam can be induced by light, depending on the light intensity I¯0: (a) a statically deformed state (I¯0=0.025) and (b) periodic vibration state (I¯0=0.05). (c) The amplitude of light-driven vibration increases with increasing light intensity (I¯0=0.075). In the calculation, we fix the parameters: thermal relaxation time of the cis to trans state T¯0=1, damping factor α¯=1, and light source position w¯0=0.02.

Grahic Jump Location
Fig. 4

Influence of damping factor α¯ on the light-driven vibration of the LCE beam. In the calculation, we choose (a) α¯=0.2 and (b) α¯=1. The amplitude decreases with increasing damping factor. In the calculation, we fix the parameters: light intensity I¯0=0.1, thermal relaxation time of the cis to trans state T¯0=0.2, and light source position w¯0=0.0001.

Grahic Jump Location
Fig. 5

Influence of thermal relaxation time of the cis to trans state T¯0 on the light-driven vibration in the LCE beam. (a) We set thermal relaxation time T¯0=0.3, first-order vibration mode is induced in the LCE beam. (b) We set thermal relaxation time T¯0=0.1, second-order vibration mode is induced in the beam with smaller amplitude. The other parameters used in the calculations are light intensity I¯0=0.2, damping factor α¯=1, and light source position w¯0=0.0001.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In