Research Papers

Thin-Shell Thickness of Two-Dimensional Materials

[+] Author and Article Information
Enlai Gao

Applied Mechanics Laboratory,
Department of Engineering Mechanics,
Center for Nano and Micro Mechanics,
Tsinghua University,
Beijing 100084, China

Zhiping Xu

Applied Mechanics Laboratory,
Department of Engineering Mechanics,
Center for Nano and Micro Mechanics,
Tsinghua University,
Beijing 100084, China;
State Key Laboratory of Mechanics and
Control of Mechanical Structures,
Nanjing University of
Aeronautics and Astronautics,
Nanjing 210016, China
e-mail: xuzp@tsinghua.edu.cn

1Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received August 21, 2015; final manuscript received September 5, 2015; published online October 1, 2015. Editor: Yonggang Huang.

J. Appl. Mech 82(12), 121012 (Oct 01, 2015) (4 pages) Paper No: JAM-15-1444; doi: 10.1115/1.4031568 History: Received August 21, 2015; Revised September 05, 2015

In applying the elastic shell models to monolayer or few-layer two-dimensional (2D) materials, an effective thickness has to be defined to capture their tensile and out-of-plane mechanical behaviors. This thin-shell thickness differs from the interlayer distance of their layer-by-layer assembly in the bulk and is directly related to the Föppl–von Karman number that characterizes the mechanism of nonlinear structural deformation. In this work, we assess such a definition for a wide spectrum of 2D crystals of current interest. Based on first-principles calculations, we report that the discrepancy between the thin-shell thickness and interlayer distance is weakened for 2D materials with lower tensile stiffness, higher bending stiffness, or more number of atomic layers. For multilayer assembly of 2D materials, the tensile and bending stiffness have different scaling relations with the number of layers, and the thin-shell thickness per layer approaches the interlayer distance as the number of layers increases. These findings lay the ground for constructing continuum models of 2D materials with both tensile and bending deformation.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Butler, S. Z. , Hollen, S. M. , Cao, L. , Cui, Y. , Gupta, J. A. , Gutiérrez, H. R. , Heinz, T. F. , Hong, S. S. , Huang, J. , Ismach, A. F. , Johnston-Halperin, E. , Kuno, M. , Plashnitsa, V. V. , Robinson, R. D. , Ruoff, R. S. , Salahuddin, S. , Shan, J. , Shi, L. , Spencer, M. G. , Terrones, M. , Windl, W. , and Goldberger, J. E. , 2013, “ Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano, 7(4), pp. 2898–2926. [CrossRef] [PubMed]
Xu, Z. , 2011, “ Nano-Engineering of Graphene and Related Materials,” Physics and Applications of Graphene, S. Mikhailov , ed., Intech, Rijeka, Croatia.
Heyde, M. , Shaikhutdinov, S. , and Freund, H. J. , 2012, “ Two-Dimensional Silica: Crystalline and Vitreous,” Chem. Phys. Lett., 550, pp. 1–7. [CrossRef]
Splendiani, A. , Sun, L. , Zhang, Y. , Li, T. , Kim, J. , Chim, C. Y. , Galli, G. , and Wang, F. , 2010, “ Emerging Photoluminescence in Monolayer MoS2,” Nano Lett., 10(4), pp. 1271–1275. [CrossRef] [PubMed]
Zhu, Z. , and Tománek, D. , 2014, “ Semiconducting Layered Blue Phosphorus: A Computational Study,” Phys. Rev. Lett., 112(17), p. 176802. [CrossRef] [PubMed]
Yang, C. , Yu, Z. , Lu, P. , Liu, Y. , Ye, H. , and Gao, T. , 2014, “ Phonon Instability and Ideal Strength of Silicene Under Tension,” Comput. Mater. Sci., 95, pp. 420–428. [CrossRef]
Michel, K. H. , and Verberck, B. , 2009, “ Theory of Elastic and Piezoelectric Effects in Two-Dimensional Hexagonal Boron Nitride,” Phys. Rev. B, 80(22), p. 224301. [CrossRef]
Michel, K. H. , and Verberck, B. , 2011, “ Phonon Dispersions and Piezoelectricity in Bulk and Multilayers of Hexagonal Boron Nitride,” Phys. Rev. B, 83(11), p. 115328. [CrossRef]
Xue, K. , and Xu, Z. , 2010, “ Strain Effects on Basal-Plane Hydrogenation of Graphene: A First-Principles Study,” Appl. Phys. Lett., 96(6), p. 063103. [CrossRef]
Xu, Z. , and Buehler, M. J. , 2012, “ Heat Dissipation at a Graphene-Substrate Interface,” J. Phys.: Condens. Matter, 24(47), p. 475305. [CrossRef] [PubMed]
Duerloo, K.-A. N. , Li, Y. , and Reed, E. J. , 2014, “ Structural Phase Transitions in Two-Dimensional Mo- and W-Dichalcogenide Monolayers,” Nat. Commun., 5, p. 4214. [CrossRef] [PubMed]
Wei, N. , Peng, X. , and Xu, Z. , 2014, “ Understanding Water Permeation in Graphene Oxide Membranes,” ACS Appl. Mater. Interfaces, 6(8), pp. 5877–5883. [CrossRef] [PubMed]
Wang, L. , Zheng, Q. , Liu, J. Z. , and Jiang, Q. , 2005, “ Size Dependence of the Thin-Shell Model for Carbon Nanotubes,” Phys. Rev. Lett., 95(10), pp. 105501–105504. [CrossRef] [PubMed]
Huang, Y. , Wu, J. , and Hwang, K. C. , 2006, “ Thickness of Graphene and Single-Wall Carbon Nanotubes,” Phys. Rev. B, 74(24), p. 245413. [CrossRef]
Landau, L. D. , and Lifshitz, E. M. , 1986, Theory of Elasticity, Butterworth-Heinemann, Oxford, UK.
Yakobson, B. I. , Brabec, C. J. , and Bernholc, J. , 1996, “ Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response,” Phys. Rev. Lett., 76(14), pp. 2511–2514. [CrossRef] [PubMed]
Zhang, T. , Li, X. , and Gao, H. , 2014, “ Defects Controlled Wrinkling and Topological Design in Graphene,” J. Mech. Phys. Solids, 67, pp. 2–13. [CrossRef]
Perdew, J. P. , Burke, K. , and Ernzerhof, M. , 1997, “ Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., 78(7), p. 1396. [CrossRef]
Blöchl, P. E. , 1994, “ Projector Augmented-Wave Method,” Phys. Rev. B, 50(24), pp. 17953–17979. [CrossRef]
Grimme, S. , Antony, J. , Ehrlich, S. , Krieg, H. , 2010, “ A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu,” J. Chem. Phys., 132(15), p. 154104. [CrossRef] [PubMed]
Togo, A. , and Tanaka, I. , 2005, “ First Principles Phonon Calculations in Materials Science,” Scr. Mater., 108, pp. 1–5. [CrossRef]
Karssemeijer, L. J. , and Fasolino, A. , 2011, “ Phonons of Graphene and Graphitic Materials Derived From the Empirical Potential LCBOPII,” Surf. Sci., 605(17–18), pp. 1611–1615. [CrossRef]
Liu, F. , Ming, P. , and Li, J. , 2007, “ Ab Initio Calculation of Ideal Strength and Phonon Instability of Graphene Under Tension,” Phys. Rev. B, 76(6), p. 064120. [CrossRef]
Koskinen, P. , and Kit, O. O. , 2010, “ Approximate Modeling of Spherical Membranes,” Phys. Rev. B, 82(23), p. 235420. [CrossRef]
Kudin, K. N. , Scuseria, G. E. , and Yakobson, B. I. , . , 2001, “ C2F, BN, and C Nanoshell Elasticity From Ab-Initio Computations,” Phys. Rev. B, 64(23), p. 235406. [CrossRef]
Hod, O. , 2012, “ Graphite and Hexagonal Boron-Nitride Have the Same Interlayer Distance. Why?" J. Chem. Theory Comput., 8(4), pp. 1360–1369. [CrossRef]
Zhao, H. J. , 2012, “ Strain and Chirality Effects on the Mechanical and Electronic Properties of Silicene and Silicane Under Uniaxial Tension,” Phys. Lett. A, 376(46), pp. 3546–3550. [CrossRef]
Fu, H. X. , Zhang, J. , Ding, Z. J. , Li, H. , and Meng, S. , 2014, “ Stacking-Dependent Electronic Structure of Bilayer Silicene,” Appl. Phys. Lett., 104(13), p. 131904. [CrossRef]
Molina-Sánchez, A. , and Wirtz, L. , 2011, “ Phonons in Single-Layer and Few-Layer MoS2 and WS2,” Phys. Rev. B, 84(15), p. 155413. [CrossRef]
Li, T. S. , 2012, “ Ideal Strength and Phonon Instability in Single-Layer MoS2,” Phys. Rev. B, 85(23), p. 235407. [CrossRef]
Jiang, J. W. , Qi, Z. , Park, H. S. , and Rabczuk, T. , 2013, “ Elastic Bending Modulus of Single-Layer Molybdenum Disulfide (MoS2): Finite Thickness Effect,” Nanotechnology, 24(43), p. 435705. [CrossRef] [PubMed]
Radisavljevic, B. , Radenovic, A. , Brivio, J. , Giacometti, V. , and Kis, A. , 2011, “ Single-Layer MoS2 Transistors,” Nat. Nanotechnol., 6(3), pp. 147–150. [CrossRef] [PubMed]
Wei, Q. , and Peng, X. , 2014, “ Superior Mechanical Flexibility of Phosphorene and Few-Layer Black Phosphorus,” Appl. Phys. Lett., 104(25), p. 251915. [CrossRef]
Wang, Z. , and Feng, P. X. L. , 2015, “ Design of Black Phosphorus 2D Nanomechanical Resonators by Exploiting the Intrinsic Mechanical Anisotropy,” 2D Mater., 2(2), p. 021001. [CrossRef]
Guan, J. , Jin, Z. , Zhu, Z. , Chuang, C. , Jin, B.-Y. , and Tománek, D. , 2014, “ Local Curvature and Stability of Two-Dimensional Systems,” Phys. Rev. B, 90(24), p. 245403. [CrossRef]
Zhang, D. B. , Akatyeva, E. , and Dumitrică, T. , 2011, “ Bending Ultrathin Graphene at the Margins of Continuum Mechanics,” Phys. Rev. Lett., 106(25), p. 255503. [CrossRef] [PubMed]
Liu, Y. , Xu, Z. , and Zheng, Q. , 2011, “ The Interlayer Shear Effect on Graphene Multilayer Resonators,” J. Mech. Phys. Solids, 59(8), pp. 1613–1622. [CrossRef]


Grahic Jump Location
Fig. 1

(a) Tensile stiffness K, bending stiffness D, (b) D/K ratio, and the Föppl–von Karman number γ calculated for 2D materials. For γ, we consider a typical size of 2D materials of 10 μm. The dashed lines in panel (a) indicate the boundaries of D/K ratios, and the solid/dashed lines in panel (b) are theoretical predictions with ν = 0.3 based on Eqs. (1) and (2).

Grahic Jump Location
Fig. 3

(a) The relation between thin-shell thickness ts, interlayer distance d, and tensile stiffness K of 2D materials, where the value of ts approaches d with decreasing K. (b) The relation between ts, d, and the bending stiffness D for graphene multilayers. The value of ts approaches d as the number of layers N increases, due to the faster increase of D than that of K as a function of N (data taken from Ref. [36]).



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In