Research Papers

Cohesive-Shear-Lag Modeling of Interfacial Stress Transfer Between a Monolayer Graphene and a Polymer Substrate

[+] Author and Article Information
Guodong Guo

Department of Mechanical
and Aerospace Engineering,
North Carolina State University,
Raleigh, NC 27695

Yong Zhu

Department of Mechanical
and Aerospace Engineering,
North Carolina State University,
Raleigh, NC 27695
e-mail: yong_zhu@ncsu.edu

1Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received November 20, 2014; final manuscript received January 19, 2015; published online January 30, 2015. Editor: Yonggang Huang.

J. Appl. Mech 82(3), 031005 (Mar 01, 2015) (7 pages) Paper No: JAM-14-1530; doi: 10.1115/1.4029635 History: Received November 20, 2014; Revised January 19, 2015; Online January 30, 2015

Interfacial shear stress transfer of a monolayer graphene on top of a polymer substrate subjected to uniaxial tension was investigated by a cohesive zone model integrated with a shear-lag model. Strain distribution in the graphene flake was found to behave in three stages in general, bonded, damaged, and debonded, as a result of the interfacial stress transfer. By fitting the cohesive-shear-lag model to our experimental results, the interface properties were identified including interface stiffness (74 Tpa/m), shear strength (0.50 Mpa), and mode II fracture toughness (0.08 N/m). Parametric studies showed that larger interface stiffness and/or shear strength can lead to better stress transfer efficiency, and high fracture toughness can delay debonding from occurring. 3D finite element simulations were performed to capture the interfacial stress transfer in graphene flakes with realistic geometries. The present study can provide valuable insight and design guidelines for enhancing interfacial shear stress transfer in nanocomposites, stretchable electronics and other applications based on graphene and other 2D nanomaterials.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Wang, Y., Yang, R., Shi, Z. W., Zhang, L. C., Shi, D. X., Wang, E., and Zhang, G. Y., 2011, “Super-Elastic Graphene Ripples for Flexible Strain Sensors,” ACS Nano, 5(5), pp. 3645–3650. [CrossRef] [PubMed]
Raju, A. P. A., Lewis, A., Derby, B., Young, R. J., Kinloch, I. A., Zan, R., and Novoselov, K. S., 2014, “Wide-Area Strain Sensors Based Upon Graphene–Polymer Composite Coatings Probed by Raman Spectroscopy,” Adv. Funct. Mater., 24(19), pp. 2865–2874. [CrossRef]
Rogers, J. A., Someya, T., and Huang, Y., 2010, “Materials and Mechanics for Stretchable Electronics,” Science, 327(5973), pp. 1603–1607. [CrossRef] [PubMed]
Kim, R.-H., Bae, M.-H., Kim, D. G., Cheng, H., Kim, B. H., Kim, D.-H., Li, M., Wu, J., Du, F., Kim, H.-S., Kim, S., Estrada, D., Hong, S. W., Huang, Y., Pop, E., and Rogers, J. A., 2011, “Stretchable, Transparent Graphene Interconnects for Arrays of Microscale Inorganic Light Emitting Diodes on Rubber Substrates,” Nano Lett., 11(9), pp. 3881–3886. [CrossRef] [PubMed]
Young, R. J., Kinloch, I. A., Gong, L., and Novoselov, K. S., 2012, “The Mechanics of Graphene Nanocomposites: A Review,” Compos. Sci. Technol., 72(12), pp. 1459–1476. [CrossRef]
Ramanathan, T., Abdala, A. A., Stankovich, S., Dikin, D. A., Herrera Alonso, M., Piner, R. D., Adamson, D. H., Schniepp, H. C., Chen, X., Ruoff, R. S., Nguyen, S. T., Aksay, I. A., Prud'Homme, R. K., and Brinson, L. C., 2008, “Functionalized Graphene Sheets for Polymer Nanocomposites,” Nat. Nanotechnol., 3(6), pp. 327–331. [CrossRef] [PubMed]
Rafiee, M. A., Rafiee, J., Wang, Z., Song, H., Yu, Z.-Z., and Koratkar, N., 2009, “Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content,” ACS Nano, 3(12), pp. 3884–3890. [CrossRef] [PubMed]
Lee, C., Wei, X. D., Kysar, J. W., and Hone, J., 2008, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene,” Science, 321(5887), pp. 385–388. [CrossRef] [PubMed]
Lee, G. H., Cooper, R. C., An, S. J., Lee, S., van der Zande, A., Petrone, N., Hammerherg, A. G., Lee, C., Crawford, B., Oliver, W., Kysar, J. W., and Hone, J., 2013, “High-Strength Chemical-Vapor Deposited Graphene and Grain Boundaries,” Science, 340(6136), pp. 1073–1076. [CrossRef] [PubMed]
Zhang, P., Ma, L., Fan, F., Zeng, Z., Peng, C., Loya, P. E., Liu, Z., Gong, Y., Zhang, J., Zhang, X., Ajayan, P. M., Zhu, T., and Lou, J., 2014, “Fracture Toughness of Graphene,” Nat. Commun., 5, p. 3782. [CrossRef] [PubMed]
Rasool, H. I., Ophus, C., Klug, W. S., Zettl, A., and Gimzewski, J. K., 2013, “Measurement of the Intrinsic Strength of Crystalline and Polycrystalline Graphene,” Nat. Commun., 4, p. 2881. [CrossRef] [PubMed]
Jia, Y. Y., Chen, Z. R., and Yan, W. Y., 2014, “A Numerical Study on Carbon Nanotube–Hybridized Carbon Fibre Pullout,” Compos. Sci. Technol., 91, pp. 38–44. [CrossRef]
Kulkarni, M., Carnahan, D., Kulkarni, K., Qian, D., and Abot, J. L., 2010, “Elastic Response of a Carbon Nanotube Fiber Reinforced Polymeric Composite: A Numerical and Experimental Study,” Composites Part B, 41(5), pp. 414–421. [CrossRef]
Toth, F., Rammerstorfer, F. G., Cordill, M. J., and Fischer, F. D., 2013, “Detailed Modelling of Delamination Buckling of Thin Films Under Global Tension,” Acta Mater., 61(7), pp. 2425–2433. [CrossRef] [PubMed]
Sun, J. Y., Lu, N. S., Yoon, J., Oh, K. H., Suo, Z. G., and Vlassak, J. J., 2012, “Debonding and Fracture of Ceramic Islands on Polymer Substrates,” J. Appl. Phys., 111(1), p. 013517. [CrossRef]
Gong, L., Kinloch, I. A., Young, R. J., Riaz, I., Jalil, R., and Novoselov, K. S., 2010, “Interfacial Stress Transfer in a Graphene Monolayer Nanocomposite,” Adv. Mater., 22(24), pp. 2694–2697. [CrossRef] [PubMed]
Young, R. J., Gong, L., Kinloch, I. A., Riaz, I., Jalil, R., and Novoselov, K. S., 2011, “Strain Mapping in a Graphene Monolayer Nanocomposite,” ACS Nano, 5(4), pp. 3079–3084. [CrossRef] [PubMed]
Jiang, T., Huang, R., and Zhu, Y., 2014, “Interfacial Sliding and Buckling of Monolayer Graphene on a Stretchable Substrate,” Adv. Funct. Mater., 24(3), pp. 396–402. [CrossRef]
Srivastava, I., Mehta, R. J., Yu, Z.-Z., Schadler, L., and Koratkar, N., 2011, “Raman Study of Interfacial Load Transfer in Graphene Nanocomposites,” Appl. Phys. Lett., 98(6), p. 063102. [CrossRef]
Tsoukleri, G., Parthenios, J., Papagelis, K., Jalil, R., Ferrari, A. C., Geim, A. K., Novoselov, K. S., and Galiotis, C., 2009, “Subjecting a Graphene Monolayer to Tension and Compression,” Small, 5(21), pp. 2397–2402. [CrossRef] [PubMed]
Yu, T., Ni, Z., Du, C., You, Y., Wang, Y., and Shen, Z., 2008, “Raman Mapping Investigation of Graphene on Transparent Flexible Substrate: The Strain Effect,” J. Phys. Chem. C, 112(33), pp. 12602–12605. [CrossRef]
Zu, M., Li, Q., Zhu, Y., Zhu, Y., Wang, G., Byun, J.-H., and Chou, T.-W., 2013, “Stress Relaxation in Carbon Nanotube-Based Fibers for Load-Bearing Applications,” Carbon, 52, pp. 347–355. [CrossRef]
Koenig, S. P., Boddeti, N. G., Dunn, M. L., and Bunch, J. S., 2011, “Ultrastrong Adhesion of Graphene Membranes,” Nat. Nanotechnol., 6(9), pp. 543–546. [CrossRef] [PubMed]
Zong, Z., Chen, C. L., Dokmeci, M. R., and Wan, K. T., 2010, “Direct Measurement of Graphene Adhesion on Silicon Surface by Intercalation of Nanoparticles,” J. Appl. Phys., 107(2), p. 026104. [CrossRef]
Yoon, T., Shin, W. C., Kim, T. Y., Mun, J. H., Kim, T. S., and Cho, B. J., 2012, “Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process,” Nano Lett., 12(3), pp. 1448–1452. [CrossRef] [PubMed]
Cao, Z., Wang, P., Gao, W., Tao, L., Suk, J. W., Ruoff, R. S., Akinwande, D., Huang, R., and Liechti, K. M., 2014, “A Blister Test for Interfacial Adhesion of Large-Scale Transferred Graphene,” Carbon, 69, pp. 390–400. [CrossRef]
Boddeti, N. G., Koenig, S. P., Long, R., Xiao, J., Bunch, J. S., and Dunn, M. L., 2013, “Mechanics of Adhered, Pressurized Graphene Blisters,” ASME J. Appl. Mech., 80(4), p. 040909. [CrossRef]
Amnaya, P. A., Dimitris, C. L., and Daniel, C. H., 2009, “Modeling of Graphene–Polymer Interfacial Mechanical Behavior Using Molecular Dynamics,” Modell. Simul. Mater. Sci. Eng., 17(1), p. 015002. [CrossRef]
Safaei, M., Sheidaei, A., Baniassadi, M., Ahzi, S., Mosavi Mashhadi, M., and Pourboghrat, F., 2015, “An Interfacial Debonding-Induced Damage Model for Graphite Nanoplatelet Polymer Composites,” Comput. Mater. Sci., 96(Pt. A), pp. 191–199. [CrossRef]
Ryu, S. K., Jiang, T. F., Im, J., Ho, P. S., and Huang, R., 2014, “Thermomechanical Failure Analysis of Through-Silicon Via Interface Using a Shear-Lag Model With Cohesive Zone,” IEEE Trans. Device Mater. Reliab., 14(1), pp. 318–326. [CrossRef]
Yang, B., and Mall, S., 2003, “Cohesive-Shear-Lag Model for Cycling Stress–Strain Behavior of Unidirectional Ceramic Matrix Composites,” Int. J. Damage Mech., 12(1), pp. 45–64. [CrossRef]
De Lorenzis, L., and Zavarise, G., 2009, “Cohesive Zone Modeling of Interfacial Stresses in Plated Beams,” Int. J. Solids Struct., 46(24), pp. 4181–4191. [CrossRef]
Barenblatt, G. I., 1959, “The Formation of Equilibrium Cracks During Brittle Fracture. General Ideas and Hypotheses. Axially-Symmetric Cracks,” J. Appl. Math. Mech., 23(3), pp. 622–636. [CrossRef]
Dugdale, D. S., 1960, “Yielding of Steel Sheets Containing Slits,” J. Mech. Phys. Solids, 8(2), pp. 100–104. [CrossRef]
Jiang, L. Y., Huang, Y., Jiang, H., Ravichandran, G., Gao, H., Hwang, K. C., and Liu, B., 2006, “A Cohesive Law for Carbon Nanotube/Polymer Interfaces Based on the van der Waals Force,” J. Mech. Phys. Solids, 54(11), pp. 2436–2452. [CrossRef]
Alfano, G., 2006, “On the Influence of the Shape of the Interface Law on the Application of Cohesive-Zone Models,” Compos. Sci. Technol., 66(6), pp. 723–730. [CrossRef]
Needleman, A., 1990, “An Analysis of Tensile Decohesion Along an Interface,” J. Mech. Phys. Solids, 38(3), pp. 289–324. [CrossRef]
Cox, H. L., 1952, “The Elasticity and Strength of Paper and Other Fibrous Materials,” Br. J. Appl. Phys., 3(3), pp. 72–79. [CrossRef]
ABAQUS, 2010, “abaqus 6.10 Documentation,” Dassault Systemes Simulia Corp., Johnston, RI.
Lee, S. K., Kim, B. J., Jang, H., Yoon, S. C., Lee, C., Hong, B. H., Rogers, J. A., Cho, J. H., and Ahn, J. H., 2011, “Stretchable Graphene Transistors With Printed Dielectrics and Gate Electrodes,” Nano Lett., 11(11), pp. 4642–4646. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Bilinear cohesive law

Grahic Jump Location
Fig. 2

Schematic diagram of the monolayer graphene/PET configuration under uniaxial tension

Grahic Jump Location
Fig. 3

Strain distribution along the length of a graphene flake. Symbols represent experimental data, solid lines are the analytical solution of the cohesive-shear-lag model and dashed lines are the FEA simulation. Red line (0.2% strain) indicates that the interface is perfectly bonded while blank lines indicate that damage occurs.

Grahic Jump Location
Fig. 4

Effect of interface stiffness. Red lines indicate that the interface is perfectly bonded while blank lines indicate that damage occurs. When K0 = 740 Tpa/m, the first critical strain ɛc1 = 0.10%; when K0 = 7.4 Tpa/m, ɛc1 = 1.07%.

Grahic Jump Location
Fig. 5

Effect of interfacial shear strength. Red lines indicate that the interface is perfectly bonded while blank lines indicate damage occurs. When τmax = 0.4Mpa, ɛc1 = 0.25%; and when τmax = 0.6Mpa, ɛc1 = 0.37%.

Grahic Jump Location
Fig. 6

Effect of graphene length and interface fracture toughness on the second critical strain defined in Sec. 2.3

Grahic Jump Location
Fig. 7

Strain distribution in a graphene flake with length of 60 μm using the cohesive-shear-lag model and the nonlinear shear-lag model

Grahic Jump Location
Fig. 8

Normal strain distribution in (a) rectangular, (b) H shaped, and (c) triangular graphene flakes under different applied substrate strain levels (in x direction). Graphene length is 21.8 μm and width is 5 μm in all cases. A quarter of the model is used for the rectangular and H shapes, and a half for the triangular shape due to symmetry.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In