Technical Briefs

Lattice-Misfit Stresses in a Circular Bi-Material Gallium-Nitride Assembly

[+] Author and Article Information
E. Suhir

Bell Laboratories,
Physical Sciences and Engineering Research Division,
Murray Hill, NJ 07974;
University of California,
Department of Electrical Engineering,
Santa Cruz, CA 95064;
University of Maryland,
Department of Mechanical Engineering,
College Park, MD 20742;
Technical University,
Department of Electronic Materials,
1040 Vienna, Austria;
ERS LLC Co., Los Altos, CA 94024
e-mail: suhire@aol.com

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received December 17, 2011; final manuscript received June 11, 2012; accepted manuscript posted July 6, 2012; published online November 19, 2012. Assoc. Editor: Pradeep Sharma.

J. Appl. Mech 80(1), 014505 (Nov 19, 2012) (12 pages) Paper No: JAM-11-1481; doi: 10.1115/1.4007104 History: Received December 17, 2011; Revised June 11, 2012; Accepted July 06, 2012

A simple and physically meaningful analytical (“mathematical”) predictive model is developed using two-dimensional (plane-stress) theory-of-elasticity approach (TEA) for the evaluation of the effect of the circular configuration of the substrate (wafer) on the elastic lattice-misfit (mismatch) stresses (LMS) in a semiconductor and particularly in a gallium nitride (GaN) film grown on such a substrate. The addressed stresses include (1) the interfacial shearing stress supposedly responsible for the occurrence and growth of dislocations, for possible delaminations, and for the cohesive strength of the intermediate strain buffering material, if any, as well as (2) normal radial and circumferential (tangential) stresses acting in the film cross-sections and responsible for the short- and long-term strength (fracture toughness) of the film. The TEA results are compared with the formulas obtained using strength-of-materials approach (SMA). This approach considers, instead of the actual circular substrate, an elongated bi-material rectangular strip of unit width and of finite length equal to the wafer diameter. The numerical example is carried out, as an illustration, for a GaN film grown on a silicon carbide (SiC) substrate. It is concluded that the SMA model is acceptable for understanding the physics of the state of stress and for the prediction of the normal stresses in the major midportion of the assembly. The SMA model underestimates, however, the maximum interfacial shearing stress at the assembly periphery and, because of the very nature of the SMA, is unable to address the circumferential stress. The developed TEA model can be used, along with the author's earlier publications and the (traditional and routine) finite-element analyses (FEA), to assess the merits and shortcomings of a particular semiconductor crystal growth (SCG) technology, as far as the level of the expected LMS are concerned, before the actual experimentation and/or fabrication is decided upon and conducted.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.


Chen, C. H., Coffie, R., Krishnamurthy, K., Keller, S., Rodwell, M., and Mishra, U. K., 2000, “Dual-Gate AlGaN/GaN Modulation-Doped Field-Effect Transistors With Cut-Off Frequencies f≻60 GHz,” IEEE Electron Device Lett., 21(12), pp. 549–551. [CrossRef]
Albulet, M., 2001, RF Power Amplifier, SciTech Publishing, Raleigh, NC.
Green, B. M., Tilak, V., Lee, S., Kim, H., Smart, J. A., Webb, K. J., Shealy, J. R., and Eastman, L. F., 2001, “High-Power Broad-Band AlGaN HEMT MMIC on SiC Substrates,” IEEE Trans. Microwave Theory Tech., 49(12), pp. 2486–2493. [CrossRef]
XieS., Paidi, V., Coffie, R., Keller, S., Heikman, S., Moran, B., Chini, A., DanBaars, S. P., Mishra, U., Long, S., and Rodwell, M. J. W., 2003, “High Linearity of Class B Power Amplifiers in GaN HEMT Technology,” IEEE Microw. Wirel. Compon. Lett., 13(7), pp. 284–286. [CrossRef]
Gao, S., 2006, “High Efficiency Class-F RF/Microwave Power Amplifiers,” IEEE Microw. Mag., 7(1), pp. 40–48. [CrossRef]
Kim, C., Robinson, I. K., Myoung, J., Shim, K., Yoo, M.-C., and Kim, K., 1996, “Critical Thickness of GaN Thin Films on Sapphire (0001),” Appl. Phys. Lett., 69(16), pp. 2358–2360. [CrossRef]
Lee, S. C., Dawson, L. R., Pattada, B., Brueck, S. R. J., Jiang, Y.-B., and Xu, H. F., 2004, “Strain-Relieved, Dislocation-Free InxGa1-xAs/GaAs(001) Heterostructure by Nanoscale-Patterned Growth,” Appl. Phys. Lett., 85, pp. 4181–4183. [CrossRef]
Singhal, S., Li, T., Chaudhari, A., Hanson, A. W., Therrien, R., Johnson, J. W., Nagy, W., Marquart, J., Rajagopal, P., Roberts, J. C., Piner, E. L., Kizilyalli, I. C., and Linthicum, K. J., 2006, “Reliability of Large Periphery GaN-on-Si HFETs,” Microelectron. Reliab., 46, pp. 1247–1253. [CrossRef]
Wilcox, G., and Andrews, M., 2009, “TriQuint Delivers High Power—Wideband GaN Technology,” http://www.triquint.com/products/tech-library/docs/articles/tqnt_jan09-mpd-ver2.pdf
Skromme, J., Zhao, H., Wang, D., Kong, H. S., Leonard, M. T., Bulman, G. E., and Molner, R. J., 1997, “Strain Determination in Heteroepitaxial GaN,” Appl. Phys. Lett., 71, pp. 829–831. [CrossRef]
Barghout, K., and Chaudhuri, J., 2004, “Calculation of Residual Thermal Stress in GaN Epitaxial Layers Grown on Technologically Important Substrates,” J. Mater. Sci., 39, pp. 5817–5823. [CrossRef]
Zhang, B. S., Wu, M., Liu, J. P., Chen, J., Zhu, J. J., Shen, X. M., Feng, G., Zhao, D. G., Wang, Y. T., Yang, H., and Boyd, A. R., 2004, “Reduction of Tensile Stress in GaN Grown on Si(1 1 1) by Inserting a Low-Temperature AlN Interlayer,” J. Cryst. Growth, 270, pp. 316–321. [CrossRef]
Acord, J. D., Raghavan, S., Snyder, D. W., and Redwing, J. M., 2004, “In Situ Stress Measurements During MOCVD Growth of AlGaN on SiC,” J. Cryst. Growth, 272(1-4), pp. 65–71. [CrossRef]
Karabacak, T., Picu, C. R., Senkevich, J. J., Wang, G.-C., and Lu, T.-M., 2004, “Stress Reduction in Tungsten Films Using Nano-Structured Compliant Layers,” J. Appl. Phys., 96(10), pp. 5740–5746. [CrossRef]
Kapolnek, D., Wu, X. H., Heying, B., Keller, S., Keller, B. P., Mishra, U. K., DenBaars, S. P., and Speck, J. S., 1995, “Structural Evolution in Epitaxial Metalorganic Chemical Vapor Deposition Grown GaN Films on Sapphire,” Appl. Phys. Lett., 67, pp. 1541–1543. [CrossRef]
Keller, S., Keller, B. P., Wu, Y.-F., Heying, B., Speck, J. S., Mishra, U. K., DenBaars, S. P., 1996, “Influence of Sapphire Nitridation on Properties of GaN Grown by Metalorganic Chemical Vapor Deposition,” Appl. Phys. Lett., 68, pp. 1525–1527. [CrossRef]
Lee, J., Cook, T. E., Bryan, E. N., Hartman, J. D., Davis, R. F., and Nemanich, R. J., 2001, “Wafer Bonding of SiC and GaN,” Proceedings of the MRS Symposium, Vol. 681E.
Suhir, E., 1986, “Stresses in Bi-Metal Thermostats,” ASME J. Appl. Mech., 53(3), pp. 657–660. [CrossRef]
Luryi, S., and Suhir, E., 1986, “New Approach to the High Quality Epitaxial Growth of Lattice-Mismatched Materials,” Appl. Phys. Lett., 49(3), pp. 140–142. [CrossRef]
Van Mieghem, P., Jain, S. C., Nijs, J., and Van Overstraeten, R., 1994, “Stress Relaxation in Laterally Small Strained Semiconductor Epilayers,” J. Appl. Phys., 75(1), pp. 666–668. [CrossRef]
Wang, J., Tottori, S., Hao, M.-S., Ishikawa, Y., Sugahara, T., Yamashita, K., and Sakai, S., 1998, “Lateral Overgrowth of Thick GaN on Patterned GaN Substrate by Sublimation Technique,” Jpn. J. Appl. Phys., 37, pp. 4475–4476. [CrossRef]
Mynbaeva, M., Titkov, A., Kryganovskii, A., Ratnikov, V., Huhtinen, H., Laiho, R., and Dmitriev, V., 2000, “Structural Characterization and Strain Relaxation in Porous GaN Layers,” Appl. Phys. Lett., 76, pp. 1113–1115. [CrossRef]
Zangooie, S., Woollam, J. A., and Arwin, H., 2000, “Self-Organization in Porous 6H-SiC,” J. Mater. Res., 15, pp. 1860–1863. [CrossRef]
Inoki, C. K., Kuan, T. S., Lee, C. D., Sagar, A., Feenstra, R. M., Koleske, D. D., Diaz, D. J., Bohn, P. W., and Adesida, I., 2003, “Growth of GaN on Porous SiC and GaN Substrates,” J. Electron. Mater., 32, pp. 855–860. [CrossRef]
Lee, C. D., Ramachandran, V., Sagar, A., Feenstra, R. M., Greve, D. W., Sarney, W. L., Salamanca-Riba, L., Look, D. C., Bai, S., Choyke, W. J., and Devaty, R. P., 2001, “Properties of GaN Epitaxial Layers Grown on 6H-SiC(0001) by Plasma-Assisted Molecular Beam Epitaxy,” J. Electron. Mater., 30, pp. 162–169. [CrossRef]
Waltereit, P., Lim, S.-H., McLaurin, M., and Speck, J. S., 2002, “Hetero-Epitaxial Growth of GaN on 6H-SiC (0001) by Plasma-Assisted Molecular Beam Epitaxy,” Phys. Status Solidi, 194(2), pp. 524–527. [CrossRef]
Ghosh, B. K., Tanikawa, T., Hashimoto, A., Yamamoto, A., and Ito, Y., 2003, “Reduced-Stress GaN Epitaxial Layers Grown on Si(1 1 1) by Using a Porous GaN Interlayer Converted From GaAs,” J. Cryst. Growth, 249, pp. 422–428. [CrossRef]
Barnes, T. M., Leaf, J., Fry, C., and Wolden, C. A., 2005, “Room Temperature Chemical Vapor Deposition of c-Axis ZnO,” J. Cryst. Growth, 274, pp. 412–417. [CrossRef]
Fabbri, E., Pergolesi, D., and Traversa, E., 2010, “Ionic Conductivity in Oxide Hetero-Structures: The Role of Interfaces,” Sci. Technol. Adv. Mater., 11, p. 054503. [CrossRef]
Sagar, A., Feenstra, R. M., and Freitas, J.A., Jr., 2007, “Growth of GaN on Porous SiC by Molecular Beam Epitaxy,” Porous SiC and GaN: Epitaxy, Catalysis, Biotechnology Applications, R. M.Feenstra and C. E. C.Wood, eds., Wiley, West Sussex, U.K.
Frayssinet, E., Beaumont, B., Faurie, J. P., Gibart, P., Makkai, Z., Perz, B., Lefebre, P., and Valvin, P., 2002, “Micro Epitaxial Lateral Overgrowth of GaN/Sapphire by Metal Organic Vapor Phase Epitaxy,” MRS Internet J. Nitride Semicond. Res., 7, 8.
Sagar, A., Lee, C. D., Feenstra, R. M., Inoki, C. K., and Kuan, T. S., 2003, “Plasma-Assisted Molecular Beam Epitaxy of GaN on Porous SiC Substrates With Varying Porosity,” J. Vac. Sci. Technol. B, 21, pp. 1812–1817. [CrossRef]
Hallin, C., Bakin, A. S., Owman, F., Martenssen, P., Kordina, O., and Jansen, E., 1996, “Study of the Hydrogen Etching of SiC Substrates,” Proceedings of SiC and Related Materials, Inst. Phys. Conf., Ser. No 142, Kyoto Japan, IOP, Bristol, pp. 1456–1460.
Chu, T. L., and Campbell, R. B., 1965, “Chemical Etching of Silicon Carbide With Hydrogen,” J. Electrochem. Soc., 112, pp. 955–956. [CrossRef]
Ramachandran, V., Brady, M. F., Smith, A. R., Feenstra, R. M., and Greve, D. W., 1998, “Preparation of Atomically Flat Surfaces on Silicon Carbide Using Hydrogen Etching,” J. Electron. Mater., 27, pp. 308–312. [CrossRef]
Sagar, A., Lee, C. D., Feenstra, R. M., Inoki, C. K., and Kuan, T. S., 2002, “Morphology and Effects of Hydrogen Etching of Porous SiC,” J. Appl. Phys., 92, pp. 4070–4074. [CrossRef]
Suhir, E., 2011, “Stresses in Bi-Material GaN Assemblies,” J. Appl. Phys., 110, p. 074506. [CrossRef]
Suhir, E., 2000, “Predicted Stresses in a Circular Substrate/Thin-Film System Subjected to the Change in Temperature,” J. Appl. Phys., 88(5), pp. 2363–2370. [CrossRef]
Suhir, E., 1991, “Approximate Evaluation of the Elastic Interfacial Stresses in Thin Films With Application to High-Tc Superconducting Ceramics,” Int. J. Solids Struct., 27(8), pp. 1025–1034. [CrossRef]
Mishkevich, V., and Suhir, E., 1993 “Simplified Approach to the Evaluation of Thermally Induced Stresses in Bi-Material Structures,” Structural Analysis in Microelectronics and Fiber Optics, E.Suhir, ed., ASME Press, New York.
Suhir, E., 1989, “Interfacial Stresses in Bi-Metal Thermostats,” ASME J. Appl. Mech., 56(3), pp. 595–600. [CrossRef]
Timoshenko, S. P., and Woinowsky-Krieger, S., 1959, Theory of Plates and Shells, McGraw-Hill, New York.
Timoshenko, S. P., and Goodier, J. N., 1970, Theory of Elasticity, 3rd ed., McGraw-Hill, New York.
Sneddon, I. N., 1956, Special Functions of Mathematical Physics and Chemistry, Oliver and Boyd, Edinburgh, U.K.
Janke, E., Emde, F., and Lösch, F., 1960, Tafeln Höherer Functionen, B. G.Tenbrer, ed., Verlagsgesellschaft, Stuttgart, Germany, (in German).
Suhir, E., 1988, “An Approximate Analysis of Stresses in Multilayer Elastic Thin Films,” ASME J. Appl. Mech., 55(3), pp. 143–148. [CrossRef]




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In