Research Papers

Tunable Mechanical Behavior of Carbon Nanoscroll Crystals Under Uniaxial Lateral Compression

[+] Author and Article Information
Xinghua Shi

e-mail: shixh@imech.ac.cn

Qifang Yin

State Key Laboratory of Nonlinear Mechanics,
Institute of Mechanics,
Chinese Academy of Sciences,
Beijing 100190, China

Nicola M. Pugno

Laboratory of Bio-Inspired and Graphene
Department of Civil, Environmental and
Mechanical Engineering,
University of Trento via Mesiano,
77 Trento, I-38123Italy

Huajian Gao

School of Engineering,
Brown University,
610 Barus & Holley,
182 Hope Street,
Providence, RI 02912
e-mail: huajian_gao@brown.edu

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received April 2, 2013; final manuscript received April 26, 2013; accepted manuscript posted May 7, 2013; published online September 16, 2013. Editor: Yonggang Huang.

J. Appl. Mech 81(2), 021014 (Sep 16, 2013) (6 pages) Paper No: JAM-13-1145; doi: 10.1115/1.4024418 History: Received April 02, 2013; Revised April 26, 2013; Accepted May 07, 2013

A theoretical model is developed to investigate the mechanical behavior of closely packed carbon nanoscrolls (CNSs), the so-called CNS crystals, subjected to uniaxial lateral compression/decompression. Molecular dynamics simulations are performed to verify the model predictions. It is shown that the compression behavior of a CNS crystal can exhibit strong hysteresis that may be tuned by an applied electric field. The present study demonstrates the potential of CNSs for applications in energy-absorbing materials as well as nanodevices, such as artificial muscles, where reversible and controllable volumetric deformations are desired.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


Viculis, L. M., Mack, J. J., and Kaner, R. B., 2003, “A Chemical Route to Carbon Nanoscrolls,” Science, 299, p. 1361. [CrossRef] [PubMed]
Xie, X., Ju, L., Feng, X., Sun, Y., Zhou, R., Liu, K., Fan, S., Li, Q., and Jiang, K., 2009, “Controlled Fabrication of High-Quality Carbon Nanoscrolls From Monolayer Graphene,” Nano Lett., 9, pp. 2565–2570. [CrossRef] [PubMed]
Savoskin, M. V., Mochalin, V. M., Yaroshenko, A. P., Lazareva, N. I., Konstantinova, T. E., Baruskov, I. V., and Prokofiev, I. G., 2007, “Carbon Nanoscrolls Produced From Acceptor-Type Graphite Intercalation Compounds,” Carbon, 45, pp. 2797–2800. [CrossRef]
Roy, D., Angeles-Tactay, E., Brown, R. J. C., Spencer, S. J., Fry, T., Dunton, T. A., Young, T., and Milton, M. J. T., 2008, “Synthesis and Raman Spectroscopic Characterization of Carbon Nanoscrolls,” Chem. Phys. Lett., 465, pp. 254–257. [CrossRef]
Chuvilin, A. L., Kuznetsov, V. L., and Obraztsov, A. N., 2009, “Chiral Carbon Nanoscrolls With a Polygonal Cross-Section,” Carbon, 47, pp. 3099–3105. [CrossRef]
Shioyama, H., and Akita, T., 2003, “A New Route to Carbon Nanotubes,” Carbon, 41, pp. 179–181. [CrossRef]
Chen, Y., Lu, J., and Gao, Z., 2007, “Structural and Electronic Study of Nanoscrolls Rolled Up by a Single Graphene Sheet,” J. Phys. Chem. C, 111, pp. 1625–1630. [CrossRef]
Braga, S. F., Coluci, V. R., Legoas, S. B., Giro, R., Galvao, D. S., and Baughman, R. H., 2004, “Structure and Dynamics of Carbon Nanoscrolls,” Nano Lett., 4, pp. 881–884. [CrossRef]
Braga, S. F., Coluci, V. R., Baughman, R. H., and Galvao, D. S., 2007, “Hydrogen Storage in Carbon Nanoscrolls: An Atomistic Molecular Dynamics Study,” Chem. Phys. Lett., 441, pp. 78–82. [CrossRef]
Coluci, V. R., Braga, S. F., Baughman, R. H., and Galvao, D. S., 2007, “Prediction of the Hydrogen Storage Capacity of Carbon Nanoscrolls,” Phys. Rev. B, 75, p. 125404. [CrossRef]
Mpourmpakis, G., Tylianakis, E., and Froudakis, G. E., 2007, “Carbon Nanoscrolls: A Promising Material for Hydrogen Storage,” Nano Lett., 7, pp. 1893–1897. [CrossRef] [PubMed]
Pan, H., Feng, Y., and Lin, J., 2005, “Ab Initio Study of Electronic and Optical Properties of Multiwall Carbon Nanotube Structures Made Up of a Single Rolled-Up Graphite Sheet,” Phys. Rev. B, 72, p. 085415. [CrossRef]
Rurali, R., Coluci, V. R., and Galvao, D. S., 2006, “Prediction of Giant Electroactuation for Papyruslike Carbon Nanoscroll Structures: First-Principles Calculations,” Phys. Rev. B, 74, p. 085414. [CrossRef]
Shi, X., Pugno, N. M., and Gao, H., 2010, “Tunable Core Size of Carbon Nanoscrolls,” J. Comput. Theoret. Nanosc., 7, pp. 517–521. [CrossRef]
Shi, X., Cheng, Y., Pugno, N. M., and Gao, H., 2010, “Tunable Water Channels With Carbon Nanoscrolls,” Small, 6, pp. 739–744. [CrossRef] [PubMed]
Shi, X., Pugno, N. M., and Gao, H., 2010, “Mechanics of Carbon Nanoscrolls: A Review,” Acta Mech. Solid. Sin., 23(6), pp. 484–497. [CrossRef]
Cheng, Y., Shi, X., Pugno, N. M. and Gao, H., 2012, “Substrate-Supported Carbon Nanoscroll Oscillator,” Physica E Low Syst. Nanost., 44, pp. 955–959. [CrossRef]
Shi, X., Cheng, Y., Pugno, N. M., and Gao, H., 2010, “A Translational Nanoactuator Based on Carbon Nanoscrolls on Substrates,” Appl. Phys. Lett., 96, p. 053115. [CrossRef]
Shi, X., Pugno, N. M., Cheng, Y., and Gao, H., 2009, “Gigahertz Breathing Oscillators Based on Carbon Nanoscrolls,” Appl. Phys. Lett.95, p. 163113. [CrossRef]
Zhang, Z., and Li, T., 2011, “Ultrafast Nano-Oscillators Based on Interlayer-Bridged Carbon Nanoscrolls,” Nanosc. Res. Lett., 6, p. 470. [CrossRef]
Zhang, Z., and Li, T., 2010, “Carbon Nanotube Initiated Formation of Carbon Nanoscrolls,” Appl. Phys. Lett., 97, p. 081909. [CrossRef]
Zhang, Z., Huang, Y., and Li, T., 2010, “Buckling Instability of Carbon Nanoscrolls,” J. Appl. Phys., 112, p. 063515. [CrossRef]
Huang, Y., and Li, T., 2013, “Molecular Mass Transport Via Carbon Nanoscrolls,” ASME J. Appl. Mech., 80(4), p. 041038. [CrossRef]
Shi, X., Pugno, N. M., and Gao, H., 2011, “Constitutive Behavior of Pressurized Carbon Nanoscrolls,” Int. J. Fract., 171, pp. 163–168. [CrossRef]
Pugno, N. M., 2010, “The Design of Self-Collapsed Super-Strong Nanotube Bundles,” J. Mech. Phys. Solid., 58, pp. 1397–1410. [CrossRef]
Stuart, S. J., Tutein, A. B., and Harrison, J. A., 2000, “A Reactive Potential for Hydrocarbons With Intermolecular Interactions,” J. Chem. Phys., 112, pp. 6472–6486. [CrossRef]
Plimpton, S., 1995, “Fast Parallel Algorithms for Short-Range Molecular-Dynamics,” J. Comput. Phys., 117, pp. 1–19. [CrossRef]
Elliott, J. A., Sandler, J. K. W., Windle, A. H., Young, R. J., and Shaffer, M. S. P., 2004, “Collapse of Single-Wall Carbon Nanotubes is Diameter Dependent,” Phys. Rev. Lett., 92, p. 095501. [CrossRef] [PubMed]
Tang, T., Jagota, A., Hui, C. Y., and Glassmaker, N. J., 2005, “Collapse of Single-Walled Carbon Nanotubes,” J. Appl. Phys., 97, p. 074310. [CrossRef]
Liu, B., Yu, M. F., and Huang, Y., 2004, “Role of Lattice Registry in the Full Collapse and Twist Formation of Carbon Nanotubes,” Phys. Rev. B, 70, p. 161402. [CrossRef]
Xiao, J., Liu, B., Huang, Y., Zuo, J., Hwang, K.-C., and Yu, M.-F., 2007, “Collapse and Stability of Single- and Multi-Wall Carbon Nanotubes,” Nanotechnology, 18(39), p. 359703. [CrossRef]
Liu, J., 2012, “Explicit Solutions for a SWCNT Collapse,” Arch. Appl. Mech., 82, pp. 767–776. [CrossRef]


Grahic Jump Location
Fig. 1

Schematic illustration of a crystal of carbon nanoscrolls with inner core radius r0, outer radius R and interlayer spacing h under uniaxial compression

Grahic Jump Location
Fig. 2

Variation of the contact layer number n with the increasing compressive stress p¯, where n decreases mildly as p¯ increases. The parameters adopted in the calculations are B¯ = 270,γ¯ = 0.136,η = 1 (black), γ¯ = 0.136,η = 0.8 (red), and γ¯ = 0.68,η = 1 (blue).

Grahic Jump Location
Fig. 3

Snapshots of MD simulation results showing the evolution of a CNS crystal under uniaxial compression/decompression

Grahic Jump Location
Fig. 4

The core size of CNSs normalized by h as a function of the number of layers. For comparison, the critical sizes normalized by h associated with self-collapse and self-recovery for CNTs are shown as black and red lines, respectively. Other system parameters are taken to be γ¯ = 0.136λ, η = 1 and (a) λ = 1, (b) λ = 0.2.

Grahic Jump Location
Fig. 5

Stress-strain profiles of the CNS crystal under uniaxial compression (blue circles)/decompression (green triangles) under different LJ energy tuning parameter (a) λ = 1 and (b) λ = 0.4. The solid lines indicate theoretical results with parameters B¯ = 270,γ¯ = 0.136λ, η = 0.4 (blue), 0.6 (red), 1 (magenta) and η = 12 for λ = 1, η = 10 for λ = 0.4. (c) The normalized pull-off force (see arrows in Figs. 5(a) and 5(b)) for CNSs to recover from the collapsed state under different values of the LJ energy tuning parameter λ. (d) The normalized energy dissipated during a loading-unloading cycle under different values of the LJ energy tuning parameter λ.

Grahic Jump Location
Fig. 6

Stress-strain profiles of a CNS crystal under uniaxial lateral compression with different lengths of the basal graphene that rolls into individual CNSs

Grahic Jump Location
Fig. 7

Comparison of the stress-strain profiles for (a) CNS compressed under different strain rate and (b) CNTs and CNSs under uniaxial lateral compression

Grahic Jump Location
Fig. 8

Snapshots of MD simulation results showing the initial and final states of a CNS crystal under equibiaxial compression/decompression

Grahic Jump Location
Fig. 9

Stress-strain profiles of CNSs under biaxial compression/decompression under different values of the LJ energy factor λ. The lines are the theoretical results with η = 0.5, B¯ = 270,γ¯ = 0.136λ.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In