Research Papers

Evaluation of Elastic and Plastic Properties of Ni50Al50(at. %) and (Ni40,Pt10)Al50(at. %) Single Crystals Oriented by Means of Scanning Acoustic Microscopy and Depth Sensing Indentation

[+] Author and Article Information
F. Cleymand, Z. Ayadi

Institut Jean Lamour,
UMR 7198 CNRS—Université de Lorraine,
Département “Nanomatériaux,
Électronique Et Vivant,”
Equipe: “DOLPHIN-Nanomateriaux pour la vie et
Développement Responsible,”
Parc de Saurupt,
CS50840, Nancy Cedex 54011, France

A. Villemiane

Office Nationale d'Etudes et de
Recherches Aérospatiales,
29 Avenue de la Division Leclerc,
Châtillon Cedex 92322, France

E. Arab-Tehrany

Université de Lorraine,
LIBio EA 4367—2, Avenue de la Forêt de Haye,
Vandoeuvre-Lès-Nancy 54518, France

C. J. F. Kahn

Aix-Maseille Université,
Marseille 13916, France;
Marseille 13916, France

1Corresponding author.

Manuscript received February 11, 2013; final manuscript received May 8, 2013; accepted manuscript posted September 3, 2013; published online September 18, 2013. Assoc. Editor: John Lambros.

J. Appl. Mech 81(3), 031004 (Sep 18, 2013) (5 pages) Paper No: JAM-13-1071; doi: 10.1115/1.4024696 History: Received February 11, 2013; Revised May 08, 2013; Accepted September 03, 2013

Scanning acoustic microscopy and depth sensing indentation are two techniques used for extracting Young's, shear, and indentation moduli as well as the hardness of materials. In this work, we have applied these techniques on Ni50Al50(at. %) and (Ni40,Pt10)Al50(at. %) single crystals oriented (1 0 0) and (1 1 1) to measure their Young's modulus by two different techniques of local measurement and also the hardness of these alloys. Quantitative measurements highlight that the addition of 10 at.% of platinum induces a 5% decrease of Young's modulus (from 195 to 184 GPa) homogeneously spread over the surface orientations investigated,an 8% decrease of the indentation modulus, and a 40% increase of hardness without orientation effect.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


Miracle, D. B., 1993, “Overview No. 104 The Physical and Mechanical Properties of NiAl,” Acta Mater., 41(3), pp. 649–684. [CrossRef]
Evans, A. G., Mumm, D. R., Hutchinson, J. W., Meier, G. H., and Pettit, F. S., 2001, “Mechanisms Controlling the Durability of Thermal Barrier Coatings,” Prog. Mater. Sci., 46, pp. 505–553. [CrossRef]
Schulz, U., Leyens, C., Fritscher, K., Peters, M., Saruhan-Brings, B., Lavigne, O., Dorvaux, J. M., Poulain, M., Mévrel, R., and Caliez, M., 2003, “Some Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings.” Aerosp. Sci. Technol., 7 pp. 73–80. [CrossRef]
Pint, B. A., Wright, I. G., Lee, W. Y., Zhang, Y., Rubner, K., and Alexander, K. B., 1998, “Substrate and Bond Coat Compositions: Factors Affecting Alumina Scale Adhesion,” Mater. Sci. Eng. A., 245, pp. 201–211. [CrossRef]
Pint, B. A., 2004, “The Role of Chemical Composition on the Oxidation Performance of Aluminide Coatings,” Surf. Coat. Technol., 188–189 pp. 71–78. [CrossRef]
Balint, D. S., and Hutchinson, J. W., 2005, “An Analytical Model of Rumpling in Thermal Barrier Coatings,” J. Mech. Phys. Solids., 53, pp. 949–973. [CrossRef]
Chen, M. W., Glynn, M. L., Ott, R. T., Hufnagel, T. C., and Hemker, K. J., 2003, “Characterization and Modeling of a Martensitic Transformation in a Platinum Modified Diffusion Aluminide Bond Coat for Thermal Barrier Coatings,” Acta Mater., 51, pp. 4279–4294. [CrossRef]
Chen, M. W., Ott, R. T., Hufnagel, T. C., Wright, P. K., and Hemker, K. J., 2003, “Microstructural Evolution of Platinum Modified Nickel Aluminide Bond Coat During Thermal Cycling,” Surf. Coat. Technol., 163–164, pp. 25–30. [CrossRef]
Kim, S. H., Wee, D. M., and Oh, M. H., 2003, “Effects of Ternary Additions on the Thermoelastic Martensitic Transformation of NiAl,” Metall. Mater. Trans. A., 34, pp. 2089–2095. [CrossRef]
Zhang, Y., Haynes, J. A., Pint, B. A., Wright, I. G., and Lee, W. Y., 2003, “Martensitic Transformation in CVD NiAl and (Ni,Pt)Al Bond Coatings,” Surf. Coat. Technol., 163–164, pp. 19–24. [CrossRef]
Kainuma, R., Ohtani, H., and Ishida, K., 1996, “Effect of Alloying Elements on Martensitic Transformation in the Binary NiAl(β) Phase Alloys,” Metall. Mater. Trans. A, 27, pp. 2445–2453. [CrossRef]
Jiang, C., Besser, M. F., Sordelet, D. J., and Gleeson, B., 2005, “A Combined First-Principles and Experimental Study of the Lattice Site Preference of Pt in B2 NiAl,” Acta Mater., 53, pp. 2101–2109. [CrossRef]
Jiang, C., and Gleeson, B., 2006, “Effects of Cr on the Elastic Properties of B2 NiAl: A First-Principles Study,” Scr. Mater., 55, pp. 759–762. [CrossRef]
Jiang, C., Sordelet, D. J., and Gleeson, B., 2006, “Effects of Pt on the Elastic Properties of B2 NiAl: A Combined First-Principles and Experimental Study,” Acta Mater., 54, pp. 2361–2369. [CrossRef]
Franke, O., Durst, K., and Göken, M., 2007, “Microstructure and Local Mechanical Properties of Pt-Modified Nickel Aluminides on Nickel-Base Superalloys After Thermo-Mechanical Fatigue,” Mater. Sci. Eng. A, 467, pp. 15–23. [CrossRef]
Oliver, W. C., and Pharr, G. M., 1992, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” J. Mater. Res., 7, pp. 1564–1583. [CrossRef]
Pascoe, R. T., and Newey, C. W. A., 1971, “Deformation Processes in the Intermediate Phase NiAl,” Metal Sci. J., 5, pp. 50–55. [CrossRef]
Briggs, A., 1992, Acoustic Microscopy, Clarendon Press, Oxford, UK.
Doghmane, M., Hadjoub, F., Doghmane, A., and Hadjoub, Z., 2007, “Approaches for Evaluating Young's and Shear Moduli in Terms of a Single SAW Velocity Via the SAM Technique,” Mater. Lett., 61, pp. 813–816. [CrossRef]
Viktorov, L., 1967, Rayleigh and Lamb Waves, Plenum Press, New York.
Rusović, N., and Warlimont, H., 1977, “The Elastic Behaviour of β2-NiAl Alloys,” Phys. Status Solidi A., 44, pp. 609–619. [CrossRef]
Noebe, R. D., Bowman, R. R., and Nathal, M. V., 1993, “Physical and Mechanical Properties of the B2 Compound NiAl,” Int. Mater. Rev., 38, pp. 193–232. [CrossRef]
Rester, M., Motz, C., and Pippan, R., 2008, “Indentation Across Size Scales—A Survey of Indentation-Induced Plastic Zones in Copper {1 1 1} Single Crystals,” Scr. Mater., 59, pp. 742–745. [CrossRef]
Pharr, G. M., Oliver, W. C., and Brotzen, F. R., 1992, “On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation,” J. Mater. Res., 7, pp. 613–617. [CrossRef]
Vlassak, J. J., and Nix, W. D., 1994, “Measuring the Elastic Properties of Anisotropic Materials by Means of Indentation Experiments,” J. Mech. Phys. Solids., 42, pp. 1223–1245. [CrossRef]
Bei, H., George, E. P., and Pharr, G. M., 2004, “Elastic Constants of Single Crystal Cr3Si and Cr–Cr3Si Lamellar Eutectic Composites: A Comparison of Ultrasonic and Nanoindentation Measurements,” Scr. Mater., 51 pp. 875–879. [CrossRef]


Grahic Jump Location
Fig. 1

Experimental and calculated stereographic Laue's technique of tested alloys: (a), (e) Ni50Al50 (100); (b), (f) Ni50Al50 (111); (c), (g) (Ni40,Pt10)Al50 (100); and (d), (h) (Ni40,Pt10)Al50 (111). X-ray diffraction conditions: 40 kV/20 mA, 30 mm from the projection screen; steoreographic calculation was made with CaRIne Crystallography software (France)

Grahic Jump Location
Fig. 2

Plot of the median indentation force F with its corridor of variation versus indenter displacement, h, obtained from depth sensing indentation tests on high quality Ni50Al50(at. %) and (Ni40,Pt10)Al50(at. %) single crystals oriented (1 0 0) and (1 1 1)

Grahic Jump Location
Fig. 3

Comparison of the median indentation force F versus indenter displacement, h, obtained from depth sensing indentation tests on high quality Ni50Al50(at. %) and (Ni40,Pt10)Al50(at. %) single crystals oriented (1 0 0) and (1 1 1)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In