Volterra, V., 1909, â€śSulle Equazioni Integro-Differenziali della Theoria dellâ€™ElasticitĂ ,â€ť Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Natur., Rend., 18Â , pp. 295â€“300.

Volterra, V., 1913, "*Lecons sur les Functions de Lignes*", Gauthier-Villard, Paris.

Riesz, F., and Sz.-Nagy, B., 1955, "*Functional Analysis*", Frederick Ungar Publishing, New York.

Gurtin, M.Â E., and Sternberg, E., 1962, â€śOn the Linear Theory of Viscoelasticity,â€ť Arch. Ration. Mech. Anal., 11Â , pp. 291â€“356.
Â

[CrossRef]Rabotnov, Y.Â N., 1980, "*Elements of Hereditary Solid Mechanics*", Mir Publishers, Moscow.

Koeller, R.Â C., 1984, â€śApplication of Fractional Calculus to the Theory of Viscoelasticity,â€ť ASME J. Appl. Mech., 51Â , pp. 299â€“307.

Meshkov, S.Â I., Pachevskaya, G.Â N., Postnikov, V.Â S., and Rossikhin, U.Â A., 1971, â€śIntegral Representations of ÎµY-Functions and Their Application to Problems in Linear Viscoelasticity,â€ť Int. J. Eng. Sci., 9Â , pp. 387â€“398.
Â

[CrossRef]Rossikhin, Y.Â A., and Shitikova, M.Â V., 2007, â€śComparative Analysis of Viscoelastic Models Involving Fractional Derivatives of Different Orders,â€ť Fractional Calculus Appl. Anal., 10Â , pp. 111â€“121.

Mainardi, F., and Gorenflo, R., 2007, â€śTime-Fractional Derivatives in Relaxation Processes: A Tutorial Survey,â€ť Fractional Calculus Appl. Anal., 10Â , pp. 269â€“308.

Fraggstedt, M., 2006, â€śPower Dissipation in Car Tyres,â€ť Thesis, Royal Institute of Technology, Stockholm, Sweden.

Heibig, A., and Palade, L.Â I., 2008, â€śOn the Rest State Stability of an Objective Fractional Derivative Viscoelastic Fluid Model,â€ť J. Math. Phys., 49Â , p. 043101.
Â

[CrossRef]Beris, A.Â N., and Edwards, B.Â J., 1993, â€śOn the Admissibility Criteria for Linear Viscoelastic Kernels,â€ť Rheol. Acta, 32Â , pp. 505â€“510.
Â

[CrossRef]Heymans, N., 2003, â€śConstitutive Equations for Polymer Viscoelasticity Derived From Hierarchical Models in Cases of Failure of Time-Temperature Superposition,â€ť Signal Process., 83Â , pp. 2345â€“2357.
Â

[CrossRef]Read, B.Â E., 1989, â€śMechanical Relaxation in Isotactic Polypropylene,â€ť Polymer, 30Â , pp. 1439â€“1445.
Â

[CrossRef]Sathiyanarayanan, S., Sivakumar, S., and Rao, C.Â L., 2005, â€śExperimental and Modeling Study on Form 1 PVDF,â€ť International Conference on Smart Materials Structures and Systems , Bangalore, India, Paper No. ISSS-2005/SA-26, pp. 195â€“202.

DĂ®kmen, Ăś., 2004, â€śModeling of Seismic Wave Attenuation in Soils by using Fractional Derivative Approach,â€ť Ph.D. thesis, Department of Geophysical Engineering, Ankara University, Turkey.

Agrawal, O.Â P., 1999, â€śAn Analytical Scheme for Stochastic Dynamic Systems Containing Fractional Derivatives,â€ť ASME Paper No. DETC99/VIB-8238.

Rossikhin, Y.Â A., and Shitikova, M.Â V., 2008, â€śFree Damped Vibration of a Oscillator Based on Rabotnovâ€™s Model,â€ť Mech. Time-Depend. Mater., 12Â , pp. 129â€“149.
Â

[CrossRef]Mainardi, F., 1995, â€śThe Time Fractional Diffusion-Wave Equation, â€ť Radiophys. Quantum Electron., 38Â , pp. 20â€“36.

Mainardi, F., 1996, â€śThe Fundamental Solution for the Fractional Diffusion-Wave Equation,â€ť Appl. Math. Lett., 9Â , pp. 23â€“28.
Â

[CrossRef]Li, C., Liao, X., and Yu, J., 2003, â€śSynchronization of Fractional Order Chaotic Systems,â€ť Phys. Rev. E, 68Â , p. 067203.
Â

[CrossRef]Maione, G., 2006, â€śA Digital, Noninteger Order, Differentiator Using Laguerre Orthogonal Sequences,â€ť Int. J. Intell. Contr. Syst., 11Â , pp. 77â€“81.

Hara, H., and Ikeda, N., 2005, â€śNonlinear Fokker-Planck Equations on a Curved Spacetime Surface and Their Applications,â€ť Journal of the Korean Society, 46Â , pp. 651â€“656.

Metzler, R., and Klafter, J., 2000, â€śThe Random Walkâ€™s Guide to Anomalous Diffusion: A Fractional Dynamics Approach,â€ť Phys. Rep., 339Â , pp. 1â€“77.
Â

[CrossRef]Craiem, D., and Armentano, R., 2007, â€śA Fractional Derivative Model to Describe Arterial Viscoelasticity,â€ť Biorheology, 44Â , pp. 251â€“263.

Nutting, P.Â G., 1921, â€śA New General Law of Deformation,â€ť J. Franklin Inst., 191Â , pp. 679â€“685.
Â

[CrossRef]Catsiff, E., and Tobolsky, A.Â V., 1955, â€śStress-Relaxation of Polyisobutylene in the Transition Region,â€ť J. Colloid Interface Sci., 10Â , pp. 375â€“392.

Rabotnov, Y.Â N., 1953, â€śSome Problems of the Theory of Creep,â€ť National Advisory Committee for Aeronautics, Technical Memorandum No. 1353.

FlĂĽgge, W., 1975, "*Viscoelasticity*", 2nd ed., Springer-Verlag, Berlin

Zener, C.Â M., 1948, "*Elasticity and Unelasticity of Metals*", University of Chicago Press, Chicago.

Tobolsky, A.Â V., and Catsiff, E., 1956, â€śElastoviscous Properties of Polyisobutylene (and Other Amorphous Polymers) From Stress-Relaxation Studies. IX. A Summary of Results,â€ť J. Polym. Sci., 19Â , pp. 111â€“121.
Â

[CrossRef]Lee, G., Madigosky, W.Â M. and Eynck, J.Â J., 1979, â€śDynamic Viscoelastic Properties of Materials,â€ť Naval Surface Weapons Center, Silver Springs, MD, Report No. TR-78-138.

Caputo, M., and Mainardi, F., 1971, â€śA New Dissipation Model Based on Memory Mechanism,â€ť Pure Appl. Geophys., 91Â , pp. 134â€“147.
Â

[CrossRef]Bagley, R.Â L., and Torvik, P.Â J., 1984, â€śOn the Appearance of the Fractional Derivative in the Behavior of Real Materials,â€ť ASME J. Appl. Mech., 51Â , pp. 294â€“298.

Bagley, R.Â L., and Torvik, P.Â J., 1983, â€śA Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity,â€ť J. Rheol., 27Â , pp. 201â€“210.
Â

[CrossRef]Rogers, L., 1983, â€śOperators and Fractional Derivatives for Viscoelastic Constitutive Equations,â€ť J. Rheol., 27Â , pp. 351â€“372.
Â

[CrossRef]Scott Blair, G.Â W., 1947, â€śThe Role of Psychophysics in Rheology,â€ť J. Colloid Sci., 2Â , pp. 21â€“32.
Â

[CrossRef]Koeller, R.Â C., 2007, â€śToward an Equation of State for Solid Materials With Memory by Use of the Half-Order Derivative,â€ť Acta Mech., 191Â , pp. 125â€“133.
Â

[CrossRef]Heymans, N., and Podlubny, I., 2006, â€śPhysical Interpretation of Initial Conditions for Fractional Differential Equations With Riemann-Liouville Fractional Derivatives,â€ť Rheol. Acta, 45Â , pp. 765â€“771.
Â

[CrossRef]Podlubny, I., 1999, â€śFractional Differential Equations,â€ť "*Mathematics in Science and Engineering*", Vol. 198Â , Academic, New York.

Oldham, K.Â B., and Spanier, J., 1974, "*The Fractional Calculus*", Academic, New York.

Ross, B., 1975, â€śA Brief History and Exposition of the Fundamental Theory of the Fractional,â€ť Lect. Notes Math., 457Â , pp. 1â€“36.
Â

[CrossRef]Miller, K.Â S., and Ross, B., 1993, "*An Introduction to the Fractional Calculus and Fractional Differential Equations*", Wiley, New York.

Gelâ€™fand, I.Â M., and Shilov, G.Â E., 1964, "*Generalized Functions: Properties and Operations*", Vol. 1Â , Academic, New York.

Koeller, R.Â C., 1986, â€śPolynomial Operators, Stieltjes Convolution, and Fractional Calculus in Hereditary Mechanics,â€ť Acta Mech., 58Â , pp. 251â€“264.
Â

[CrossRef]Caputo, M., and Mainardi, F., 1971, â€śLinear Models of Dissipation in Anelastic Solids,â€ť Riv. Nuovo Cimento, 1Â pp. 161â€“198.
Â

[CrossRef]Mittag-Leffler, G.Â M., 1905, â€śSur la reprĂ©sentation analytique dâ€™une branche uniforme dâ€™une function monogĂ¨ne,â€ť Acta Math., 29Â , pp. 101â€“182.
Â

[CrossRef]Truesdell, C., and Noll, W., 1965, "*The Non-Linear Field Theories of Mechanics, Encyclopedia of Physics*", Vol. 3Â , Springer-Verlag, Berlin.

ErdĂ©lyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F.Â G., 1957, "*Higher Transcendental Function*", Vol. 3Â , McGraw-Hill, New York.

Welch, S.Â W. J., Rorrer, R.Â A. L., and Duren, R.Â G., 1999, â€śApplication of Time-Based Fractional Calculus Methods to Viscoelastic Creep and Stress Relaxation of Materials,â€ť Mech. Time-Depend. Mater., 3Â , pp. 279â€“303.
Â

[CrossRef]Bagley, R.Â L., 1991, â€śThe Thermorheologically Complex Material,â€ť Int. J. Eng. Sci., 29Â , pp. 797â€“806.
Â

[CrossRef]Rabotnov, Y.Â N., 1948, â€śSome Problems of Creep Theory,â€ť Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., 10Â , pp. 81â€“91.