Barenblatt, G. I., 1962, “The Mathematical Theory of Equilibrium Cracks in Brittle Fracture,” Adv. Appl. Mech., 7 , pp. 55–129.

Dugdale, D. S., 1959, “Yielding of Steel Sheets Containing Slits,” J. Mech. Phys. Solids

[CrossRef], 8 , pp. 100–104.

Tvergaard, V., and Hutchinson, J. W., 1992, “The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids,” J. Mech. Phys. Solids

[CrossRef], 40 , pp. 1377–1397.

Xu, X.-P., and Needleman, A., 1994, “Numerical Simulations of Fast Crack Growth in Brittle Solids,” J. Mech. Phys. Solids

[CrossRef], 42 (9), pp. 1397–1434.

Camacho, G., and Ortiz, M., 1966, “Computational Modeling of Impact Damage in Brittle Materials,” Int. J. Solids Struct.

[CrossRef], 33 , pp. 2899–2938.

Espinosa, H. D., Zavattieri, P. D., and Dwivedi, S., 1998, “A Finite Deformation Continuum/Discrete Model for the Description of Fragmentation and Damage in Brittle Materials,” J. Mech. Phys. Solids

[CrossRef], 46 (10), pp. 1909–1942.

Zavattieri, P. D., and Espinosa, H. D., 2001, “Grain Level Analysis of Ceramic Microstructures Subjected to Normal Impact Loading,” Acta Mater., 49 (20), pp. 4291–4311.

Klein, P. A., Foulk, J. W., Chen, E. P., Wimmer, S. A., and Gao, H., 2001, “Physics-Based Modeling of Brittle Fracture: Cohesive Formulations and the Application of Meshfree Methods,” Theor. Appl. Fract. Mech., 37 (1–3), pp. 99–166.

Moes, N., and Belytschko, T., 2002, “Extended Finite Element Method for Cohesive Crack Growth,” Eng. Fract. Mech.

[CrossRef], 69 , pp. 813–833.

De Borst, R., 2003, “Numerical Aspects of Cohesive-Zone Models,” Eng. Fract. Mech., 70 (14), pp. 1743–1757.

Ortiz, M., and Pandolfi, A., 1999, “Finite-Deformation Irreversible Cohesive Elements for Three-Dimensional Crack-Propagation Analysis,” Int. J. Numer. Methods Eng.

[CrossRef], 44 , pp. 1267–1282.

Pandolfi, A., Guduru, P. R., Ortiz, M., and Rosakis, A. J., 2000, “Three Dimensional Cohesive-Element Analysis and Experiments of Dynamic Fracture in C300 Steel,” Int. J. Solids Struct.

[CrossRef], 37 , pp. 3733–3760.

Zhou, F., and Molinari, J. F., 2004, “Dynamic Crack Propagation With Cohesive Elements: a Methodology to Address Mesh Dependency,” Int. J. Numer. Methods Eng., 59 , pp. 1–24.

Roychowdhury, S., Arun Roy, Y. D., and Dodds, R. H., 2002, “Ductile Tearing in Thin Aluminum Panels: Experiments and Analices Using Large-Displacement, 3-D Surface Cohesive Elements,” Eng. Fract. Mech.

[CrossRef], 69 , pp. 983–1002.

Belytschko, T., Liu, W. K., and Moran, B. G., 2000, "*Nonlinear Finite Elements for Continua and Structures*", John Wiley & Sons, Ltd., New York.

Li, W., and Siegmund, T., 2002, “An Analysis of Crack Growth in Thin-Sheet Metal via a Cohesive Zone Model,” Eng. Fract. Mech., 69 (18), pp. 2073–2093.

Cirak, F., Ortiz, M., and Pandolfi, A., 2005, “A Cohesive Approach to Thin-Shell Fracture and Fragmentation,” Comput. Methods Appl. Mech. Eng., 194 (21–24), pp. 2604–2618.

Belytschko, T., 1984, “Explicit Algorithms for Nonlinear Dynamics of Shells,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 43 , pp. 251–276.

Lin, J., 1998, “DYNA3D : A Nonlinear, Explicit, Three-Dimensional Finite Element Code for Solid and Structural Mechanics. User Manual,” MDGME, LLNL.

Mindlin, R. D., 1951, “Influence of Rotary Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates,” ASME J. Appl. Mech., 18 , pp. 31–38.

Rice, J. R., and Levy, N., 1972, “The Part-Through Surface Crack in an Elastic Plate,” ASME J. Appl. Mech., 39 , pp. 185–194.

Parks, D. M., and White, C. S., 1982, “Elastic-Plastic Line-Spring Finite-Elements for Surface-Cracked Plates and Shells,” ASME J. Pressure Vessel Technol., 104 , pp. 287–292.

Gullerud, A. S., Dodds, R. H., Hampton, R. W., and Dawicke, D. S., 1999, “Three-Dimensional Modeling of Dutile Crack Growth in Thin Sheet Metals: Computational Aspects and Validation,” Eng. Fract. Mech.

[CrossRef], 63 , pp. 347–374.

Rice, R. J., 1980, “The Mechanics of Earthquake Rupture,” in "*Physics of the Earth’s Interior*", A.M.Dziewonski and E.Boschi, eds., Italian Physical Society/North-Holland Publ. Co, Amsterdam, pp. 555–649.

Mahgoub, E., Deng, X., and Sutton, M. A., 2003, “Three-Dimensional Stress and Deformation Fields Around Flat and Slant Cracks Under Remote Mode I Loading Conditions” Eng. Fract. Mech., 70 (18), pp. 2527–2542.

Chen, C. R., Kolednik, O., Scheider, I., Siegmund, T., Tatschl, A., and Fischer, F. D., 2003, “On the Determination of the Cohesive Zone Parameters for the Modeling of Micro-Ductile Crack Growth in Thick Specimens,” Int. J. Fract., 120 , pp. 517–536.

Chen, C. R., and Kolednik, O., 2005, “Comparison of Cohesive Zone Parameters and Crack Tip Stress States Between Two Different Specimen Types,” Int. J. Fract., 132 , pp. 135–152.

Chen, C. R., Kolednik, O., Heerens, J., and Fischer, F. D., 2005, “Three-Dimensional Modeling of Ductile Crack Growth: Cohesive Zone Parameters and Crack Tip Triaxility,” Eng. Fract. Mech., 72 (13), pp. 2072–2094.

Kwon, S. W., and Sun, C. T., 2000, “Characteristics of Three-Dimensional Stress Fields in Plates With a Though-the-Thickness Crack,” Int. J. Fract., 104 , pp. 291–315.

Mathur, K. K., Needleman, A., and Tvergaard, V., 1996, “Three Dimensional Analysis of Dynamic Ductile Crack Growth in a Thin Plate,” J. Mech. Phys. Solids, 44 (3), pp. 439–464.