Crack Extension Force in a Piezoelectric Material

[+] Author and Article Information
Y. Eugene Pak

Grumman Corporate Research Center, Bethpage, NY 11714

J. Appl. Mech 57(3), 647-653 (Sep 01, 1990) (7 pages) doi:10.1115/1.2897071 History: Received May 20, 1987; Revised July 13, 1989; Online March 31, 2008


A conservation law that leads to a path-independent integral of fracture mechanics is derived along with the governing equations and boundary conditions for linear piezoelectric materials. A closed-form solution to the antiplane fracture problem is obtained for an unbounded piezoelectric medium. The path-independent integral is evaluated at the crack tip to obtain the energy release rate for a mode III fracture problem. For a fixed value of the mechanical load, it is shown that the crack growth can be either enhanced or retarded depending on the magnitude, the direction, and the type of the applied electrical load. It is also shown that, for certain ratios of the applied electrical load to mechanical load, crack arrestment can be observed.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In