Analysis of Simply-Supported Orthotropic Cylindrical Shells Subject to Lateral Impact Loads

[+] Author and Article Information
A. P. Christoforou, S. R. Swanson

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112

J. Appl. Mech 57(2), 376-382 (Jun 01, 1990) (7 pages) doi:10.1115/1.2892000 History: Received June 16, 1988; Revised June 23, 1989; Online March 31, 2008


An analytic solution is given for the problem of simply-supported orthotropic cylindrical shells subject to impact loading. The closed-form solution has not been obtained previously. The analysis is based on an expansion of the loads, displacements, and rotations in a double Fourier series which satisfies the end boundary conditions of simple support. Each expansion is assumed to be separable into a function of time and a function of position. By neglecting in-plane and rotary inertia the problem becomes a second-order ordinary differential equation in time for the Fourier coefficients of the radial deflection. For a given loading impulse the solution can be found by invoking the convolution integral. The results show that for impact by a heavy mass, the solution is equivalent to that obtained by an approximate procedure of neglecting the mass of the shell, which leads to a simple simple-degree-of-freedom analysis. For problems of impact by smaller masses, the higher response frequencies of the cylinder become important. The results show the importance of dynamic effects in the predicted impact duration, peak force, and peak deflection relative to the quasi-static response. The results show that the response amplitude varies linearly with the impact velocity, but the response characteristics depend on the mass of the impactor and the mass and stiffness of the cylinder.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In