Multiple Region Contact Solutions for a Flat Indenter on a Layered Elastic Half Space: Plane-Strain Case

[+] Author and Article Information
T. W. Shield, D. B. Bogy

University of California, Berkeley, Calif. 94720

J. Appl. Mech 56(2), 251-262 (Jun 01, 1989) (12 pages) doi:10.1115/1.3176076 History: Received May 27, 1988; Revised October 07, 1988; Online July 21, 2009


The plane-strain problem of a smooth, flat rigid indenter contacting a layered elastic half space is examined. It is mathematically formulated using integral transforms to derive a singular integral equation for the contact pressure, which is solved by expansion in orthogonal polynomials. The solution predicts complete contact between the indenter and the surface of the layered half space only for a restricted range of the material and geometrical parameters. Outside of this range, solutions exist with two or three contact regions. The parameter space divisions between the one, two, or three contact region solutions depend on the material and geometrical parameters and they are found for both the one and two layer cases. As the modulus of the substrate decreases to zero, the two contact region solution predicts the expected result that contact occurs only at the corners of the indenter. The three contact region solution provides an explanation for the nonuniform approach to the half space solution as the layer thickness vanishes.

Copyright © 1989 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In