Dynamic Shear Band Development in Plane Strain

[+] Author and Article Information
A. Needleman

Division of Engineering, Brown University, Providence, R.I. 02912

J. Appl. Mech 56(1), 1-9 (Mar 01, 1989) (9 pages) doi:10.1115/1.3176046 History: Received December 01, 1987; Revised July 13, 1988; Online July 21, 2009


Plane strain compression of a rectangular block is used as a model problem to investigate the dynamics of shear band development from an internal inhomogeneity. The material is characterized as a von Mises elastic-viscoplastic solid, with a hardness function that exhibits a local maximum. Regardless of whether the material is hardening or softening, plastic strain development involves the evolution of fingerlike contours emanating from the inhomogeneity at 45 deg to the compression axis. Once a given strain contour crosses the specimen, it fans out about its initial direction of propagation. For a softening solid, this fanning out ceases for some strain level greater than the strain at the hardness maximum and further straining takes place in an ever narrowing band. Many of the qualitative features of shear band development under dynamic loading conditions are the same as under quasistatic loading conditions, but a significant retardation of shear band development due to inertial effects is found.

Copyright © 1989 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In