Sufficient Symmetry Conditions for Isotropy of the Elastic Moduli Tensor

[+] Author and Article Information
R. M. Christensen

Lawrence Livermore National Laboratory, Livermore, CA 94550

J. Appl. Mech 54(4), 772-777 (Dec 01, 1987) (6 pages) doi:10.1115/1.3173115 History: Received November 24, 1986; Online July 21, 2009


Symmetry conditions are found that assure isotropy of the fourth rank tensor of elastic moduli. Crystallography provides the answer to this problem in the two-dimensional context, namely one axis of three-fold symmetry assures the isotropy of properties in the plane normal to the axis. The present work provides the answer in the three-dimensional problem: 6 axes of five-fold symmetry are sufficient to give isotropy of the elastic moduli. An important restriction must accompany the present result. The derivation is given in the special form appropriate to low density materials which have a microstructure that transmits load according to the axial deformation of a space network of material distributed into micro-struts. The corresponding fiber composite idealization is that of a fiber dominated system, it therefore follows that if the fibers take the 6 specific orientations in three-space then isotropy is obtained.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In