Elastic-Plastic Analysis of Pressurized Cylindrical Shells

[+] Author and Article Information
G. N. Brooks

Department of Engineering Science and Mechanics, University of Tennessee, Knoxville, TN 37996-2030

J. Appl. Mech 54(3), 597-603 (Sep 01, 1987) (7 pages) doi:10.1115/1.3173075 History: Received January 10, 1986; Revised December 27, 1986; Online July 21, 2009


Plasticity in shells is often contained near the ends of a segment where the bending stresses are significant. Outside of this local neighborhood the behavior is elastic. Thus, an axisymmetric shell can be divided along its axis into a purely elastic region away from an end and the local region where plasticity is present. The moment-curvature relation in the elastic-plastic region is calculated using the Tresca yield condition. Use of the Tresca yield condition greatly simplifies this derivation because the principal directions are known. This moment-curvature relationship is “exact” in the sense that only the standard assumptions of thin shell theory are made. The solutions of the elastic and plastic regions are matched at their intersection for an efficient numerical solution. The technique is used here to study the semi-infinite clamped cylindrical shell with an internal pressure loading.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In