Initial Postbuckling Behavior of Imperfect, Antisymmetric Cross-Ply Cylindrical Shells Under Torsion

[+] Author and Article Information
David Hui, I. H. Y. Du

The Ohio State University, Department of Engineering Mechanics, Columbus, Ohio 43210

J. Appl. Mech 54(1), 174-180 (Mar 01, 1987) (7 pages) doi:10.1115/1.3172954 History: Received February 07, 1986; Revised July 02, 1986; Online July 21, 2009


This paper deals with the initial postbuckling of antisymmetric cross-ply closed cylindrical shells under torsion. Under the assumptions employed in Koiter’s theory of elastic stability, the structure is imperfection-sensitive in certain intermediate ranges of the reduced-Batdorf parameter (approx. 4 ≤ ZH ≤ 20.0). Due to different material bending-stretching coupling behavior, the (0 deg inside, 90 deg outside) two-layer clamped cylinder is less imperfection sensitive than the (90 deg inside, 0 deg outside) configuration. The increase in torsional buckling load due to a higher value of Young’s moduli ratio is not necessarily accompanied by a higher degree of imperfection-sensitivity. The paper is the first to consider imperfection shape to be identical to the torsional buckling mode and presents concise parameter variations involving the reduced-Batdorf paramter and Young’s moduli ratio.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In