Free-Vibration Analysis of Rectangular Plates With Clamped-Simply Supported Edge Conditions by the Method of Superposition

[+] Author and Article Information
D. J. Gorman

Department of Mechanical Engineering, University of Ottawa, Ottawa, Ontario, Canada

J. Appl. Mech 44(4), 743-749 (Dec 01, 1977) (7 pages) doi:10.1115/1.3424166 History: Received November 01, 1976; Revised June 01, 1977; Online July 12, 2010


In this paper attention is focused on the free-vibration analysis of rectangular plates with combinations of clamped and simply supported edge conditions. Plates with at least two opposite edges simply supported are not considered as they have been analyzed in a separate paper. It is well known that the family of problems considered here have presented researchers with a formidable challenge over the years. This is because they are not directly amenable to Lévy-type solutions. It has been pointed out in the literature that most of the existing solutions are approximate in that they either do not satisfy exactly the governing differential equation or the boundary conditions, or both. In a new approach taken by the author the method of superposition is exploited for handling these dynamic problems. It is found that solutions of any degree of exactitude are easily obtained. The governing differential equation is completely satisfied and the boundary conditions are satisfied to any degree of exactitude by merely increasing the number of terms in the series. Convergence is shown to be remarkably rapid and tabulated results are provided for a large range of parameters. The immediate applicability of the method to problems involving elastic restraint or inertia forces along the plate edges has been discussed in an earlier publication.

Copyright © 1977 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In