Elastodynamic Stress-Intensity Factors for Tearing of a Half Plane

[+] Author and Article Information
J. D. Achenbach, V. K. Varatharajulu

Department of Civil Engineering, The Technological Institute, Northwestern University, Evanston, Ill.

J. Appl. Mech 41(4), 1099-1105 (Dec 01, 1974) (7 pages) doi:10.1115/1.3423441 History: Received October 01, 1973; Online July 12, 2010


This paper is concerned with the propagation of a crack which emanates under an arbitrary angle from a free surface, when that surface is subjected to antiplane mechanical disturbances. The elastodynamic problem is solved by the method of homogeneous solutions, which is based on the observation that for the externally applied disturbances that are considered here the particle velocity is self-similar. The shear stress in the vicinity of the crack tip is determined, and a stress-intensity factor is computed. For various values of the crack propagation velocity the dependence of the stress-intensity factor on the angle of crack propagation is studied. As the velocity of crack propagation increases, the maximum value of the stress-intensity factor is still obtained for symmetrical crack propagation. The singularities at the corners of the wedge-shaped regions neighboring the propagating crack are also examined. It is shown that for small values of the crack propagation velocity, the elastodynamic results reduce to corresponding quasi-static solutions.

Copyright © 1974 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In