On Computation of the Motion of Elastic Rods

[+] Author and Article Information
R. P. Nordgren

Shell Development Company, Bellaire Research Center, Houston, Texas

J. Appl. Mech 41(3), 777-780 (Sep 01, 1974) (4 pages) doi:10.1115/1.3423387 History: Received September 01, 1973; Revised October 01, 1973; Online July 12, 2010


A computational method is developed for the finite-amplitude three-dimensional motion of inextensible elastic rods with equal principal stiffnesses. The method also applies to the two-dimensional motion of such rods with unequal principal stiffnesses. For these two classes of problems the equations of the classical theory of rods are reduced to a non-linear vector equation of motion together with the inextensibility condition and appropriate boundary and initial conditions. Consistent finite-difference approximations are introduced and a semi-explicit method of solution is devised. The approximate limitation for numerical stability of the method is shown to be the same as for the usual explicit method in linear beam dynamics. By way of example the method is applied to the free fall of a circular pipe through water onto a rigid plane from a suspended initial configuration.

Copyright © 1974 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In