Two-Dimensional Flow of Liquid During the Late Stage of Solidification of Alloys

[+] Author and Article Information
R. H. Tien

Edgar C. Bain Laboratory, United States Steel Corporation Research Center, Monroeville, Pa.

J. Appl. Mech 39(1), 65-70 (Mar 01, 1972) (6 pages) doi:10.1115/1.3422670 History: Received August 04, 1970; Online July 12, 2010


This is a mathematical analysis of the two-dimensional interdendritic liquid flow occurring during late stages of solidification, i.e., when the liquidus front reaches the center of the slab. The liquid flow considered is that caused by density change accompanying freezing. The liquid-solid region is considered a porous medium where the liquid permeability is a function of the solid fraction. Analytical solution for the two-dimensional velocity and pressure fields in solidifying Al-4.5 percent Cu alloy is obtained from a mathematical model which includes the concept of conservation of mass and Darcy’s law to correlate the pressure and velocity. Assuming that there is no gas-bubble formation and that the solidified metal in the mushy zone remains rigid, the liquid moving with a creeping velocity in the interdendritic regions is under tension (when no external pressure is applied). The magnitude of this tension increases with increasing depth of the solidifying ingot and is a strong function of the cooling rate. For example, a negative pressure of the order of 100 atm in the interdendritic liquid of solidifying Al-4.5 percent Cu alloy is estimated at ∼90 percent solidification. On the basis of the present analysis, an estimate can be made of pressures required to suppress blow-hole formation during the later stages of freezing arising from the solidification shrinkage.

Copyright © 1972 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In