Abstract

Indentation measurement has emerged as a widely adapted technique for elucidating the mechanical properties of soft hydrated materials. These materials, encompassing gels, cells, and biological tissues, possess pivotal mechanical characteristics crucial for a myriad of applications across engineering and biological realms. From engineering endeavors to biological processes linked to both normal physiological activity and pathological conditions, understanding the mechanical behavior of soft hydrated materials is paramount. The indentation method is particularly suitable for accessing the mechanical properties of these materials as it offers the ability to conduct assessments in liquid environment across diverse length and time scales with minimal sample preparation. Nonetheless, understanding the physical principles underpinning indentation testing and the corresponding contact mechanics theories, making judicious choices regarding indentation testing methods and associated experimental parameters, and accurately interpreting the experimental results are challenging tasks. In this review, we delve into the methodology and applications of indentation in assessing the mechanical properties of soft hydrated materials, spanning elastic, viscoelastic, poroelastic, coupled viscoporoelastic, and adhesion properties, as well as fracture toughness. Each category is accomplished by the theoretical models elucidating underlying physics, followed by ensuring discussions on experimental setup requirements. Furthermore, we consolidate recent advancements in indentation measurements for soft hydrated materials highlighting its multifaceted applications. Looking forward, we offer insights into the future trajectory of the indentation method on soft hydrated materials and the potential applications. This comprehensive review aims to furnish readers with a profound understanding of indentation techniques and a pragmatic roadmap of characterizing the mechanical properties of soft hydrated materials.

References

1.
Doerner
,
M. F.
, and
Nix
,
W. D.
,
1986
, “
A Method for Interpreting the Data From Depth-Sensing Indentation Instruments
,”
J. Mater. Res.
,
1
(
4
), pp.
601
609
.10.1557/JMR.1986.0601
2.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.10.1557/JMR.1992.1564
3.
Pharr
,
G. M.
,
Oliver
,
W. C.
, and
Brotzen
,
F. R.
,
1992
, “
On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation
,”
J. Mater. Res.
,
7
(
3
), pp.
613
617
.10.1557/JMR.1992.0613
4.
Radmacher
,
M.
,
Fritz
,
M.
, and
Hansma
,
P. K.
,
1995
, “
Imaging Soft Samples With the Atomic Force Microscope: Gelatin in Water and Propanol
,”
Biophys. J.
,
69
(
1
), pp.
264
270
.10.1016/S0006-3495(95)79897-6
5.
Hu
,
Y.
,
Zhao
,
X.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2010
, “
Using Indentation to Characterize the Poroelasticity of Gels
,”
Appl. Phys. Lett.
,
96
(
12
), p.
121904
.10.1063/1.3370354
6.
Lai
,
Y.
, and
Hu
,
Y.
,
2017
, “
Unified Solution for Poroelastic Oscillation Indentation on Gels for Spherical, Conical and Cylindrical Indenters
,”
Soft Matter
,
13
(
4
), pp.
852
861
.10.1039/C6SM02341J
7.
Lai
,
Y.
,
He
,
D.
, and
Hu
,
Y.
,
2019
, “
Indentation Adhesion of Hydrogels Over a Wide Range of Length and Time Scales
,”
Extreme Mech. Lett.
,
31
, p.
100540
.10.1016/j.eml.2019.100540
8.
Hoh
,
J. H.
, and
Schoenenberger
,
C. A.
,
1994
, “
Surface Morphology and Mechanical Properties of MDCK Monolayers by Atomic Force Microscopy
,”
J. Cell Sci.
,
107
(
5
), pp.
1105
1114
.10.1242/jcs.107.5.1105
9.
Radmacher
,
M.
,
Fritz
,
M.
,
Kacher
,
C. M.
,
Cleveland
,
J. P.
, and
Hansma
,
P. K.
,
1996
, “
Measuring the Viscoelastic Properties of Human Platelets With the Atomic Force Microscope
,”
Biophys. J.
,
70
(
1
), pp.
556
567
.10.1016/S0006-3495(96)79602-9
10.
Darling
,
E. M.
,
Zauscher
,
S.
, and
Guilak
,
F.
,
2006
, “
Viscoelastic Properties of Zonal Articular Chondrocytes Measured by Atomic Force Microscopy
,”
Osteoarthritis Cartilage
,
14
(
6
), pp.
571
579
.10.1016/j.joca.2005.12.003
11.
Hori
,
R. Y.
, and
Mockros
,
L. F.
,
1976
, “
Indentation Tests of Human Articular Cartilage
,”
J. Biomech.
,
9
(
4
), pp.
259
268
.10.1016/0021-9290(76)90012-9
12.
Mow
,
V. C.
,
Gibbs
,
M. C.
,
Lai
,
W. M.
,
Zhu
,
W. B.
, and
Athanasiou
,
K. A.
,
1989
, “
Biphasic Indentation of Articular Cartilage-II. A Numerical Algorithm and an Experimental Study
,”
J. Biomech.
,
22
(
8–9
), pp.
853
861
.10.1016/0021-9290(89)90069-9
13.
Last
,
J. A.
,
Liliensiek
,
S. J.
,
Nealey
,
P. F.
, and
Murphy
,
C. J.
,
2009
, “
Determining the Mechanical Properties of Human Corneal Basement Membranes With Atomic Force Microscopy
,”
J. Struct. Biol.
,
167
(
1
), pp.
19
24
.10.1016/j.jsb.2009.03.012
14.
Budday
,
S.
,
Nay
,
R.
,
de Rooij
,
R.
,
Steinmann
,
P.
,
Wyrobek
,
T.
,
Ovaert
,
T. C.
, and
Kuhl
,
E.
,
2015
, “
Mechanical Properties of Gray and White Matter Brain Tissue by Indentation
,”
J. Mech. Behav. Biomed. Mater.
,
46
, pp.
318
330
.10.1016/j.jmbbm.2015.02.024
15.
Mak
,
A. F.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1987
, “
Biphasic Indentation of Articular Cartilage—I. Theoretical Analysis
,”
J. Biomech.
,
20
(
7
), pp.
703
714
.10.1016/0021-9290(87)90036-4
16.
Wiedemair
,
J.
,
Serpe
,
M. J.
,
Kim
,
J.
,
Masson
,
J. F.
,
Lyon
,
L. A.
,
Mizaikoff
,
B.
, and
Kranz
,
C.
,
2007
, “
In-Situ AFM Studies of the Phase-Transition Behavior of Single Thermoresponsive Hydrogel Particles
,”
Langmuir
,
23
(
1
), pp.
130
137
.10.1021/la061288u
17.
Hashmi
,
S. M.
, and
Dufresne
,
E. R.
,
2009
, “
Mechanical Properties of Individual Microgel Particles Through the Deswelling Transition
,”
Soft Matter
,
5
(
19
), pp.
3682
3688
.10.1039/b906051k
18.
Dingle
,
Y. T. L.
,
Boutin
,
M. E.
,
Chirila
,
A. M.
,
Livi
,
L. L.
,
Labriola
,
N. R.
,
Jakubek
,
L. M.
,
Morgan
,
J. R.
,
Darling
,
E. M.
,
Kauer
,
J. A.
, and
Hoffman-Kim
,
D.
,
2015
, “
Three-Dimensional Neural Spheroid Culture: An In Vitro Model for Cortical Studies
,”
Tissue Eng. - Part C
,
21
(
12
), pp.
1274
1283
.10.1089/ten.tec.2015.0135
19.
Rape
,
A. D.
,
Zibinsky
,
M.
,
Murthy
,
N.
, and
Kumar
,
S.
,
2015
, “
A Synthetic Hydrogel for the High-Throughput Study of Cell-ECM Interactions
,”
Nat. Commun.
,
6
(
1
), p.
8129
.10.1038/ncomms9129
20.
Lau
,
H. K.
,
Paul
,
A.
,
Sidhu
,
I.
,
Li
,
L.
,
Sabanayagam
,
C. R.
,
Parekh
,
S. H.
, and
Kiick
,
K. L.
,
2018
, “
Microstructured Elastomer‐PEG Hydrogels Via Kinetic Capture of Aqueous Liquid–Liquid Phase Separation
,”
Adv. Sci.
,
5
(
6
), p.
1701010
.10.1002/advs.201701010
21.
Li
,
C.
,
Ouyang
,
L.
,
Pence
,
I. J.
,
Moore
,
A. C.
,
Lin
,
Y.
,
Winter
,
C. W.
,
Armstrong
,
J. P. K.
, and
Stevens
,
M. M.
,
2019
, “
Buoyancy‐Driven Gradients for Biomaterial Fabrication and Tissue Engineering
,”
Adv. Mater.
,
31
(
17
), p.
1900291
.10.1002/adma.201900291
22.
Bouchonville
,
N.
,
Meyer
,
M.
,
Gaude
,
C.
,
Gay
,
E.
,
Ratel
,
D.
, and
Nicolas
,
A.
,
2016
, “
AFM Mapping of the Elastic Properties of Brain Tissue Reveals KPa Μm-1 Gradients of Rigidity
,”
Soft Matter
,
12
(
29
), pp.
6232
6239
.10.1039/C6SM00582A
23.
Boots
,
J. N. M.
,
Humblet-Hua
,
N. P. K.
,
Tonneijck
,
L.
,
Fokkink
,
R.
,
van der Gucht
,
J.
, and
Kodger
,
T. E.
,
2021
, “
Characterization of the Local Mechanical Texture of Animal Meat and Meat Replacements Using Multi-Point Indentation
,”
J. Food Eng.
,
300
, p.
110505
.10.1016/j.jfoodeng.2021.110505
24.
Boots
,
J. N. M.
,
Kooi
,
R.
,
Kodger
,
T. E.
, and
van der Gucht
,
J.
,
2021
, “
Mechanical Deconvolution of Elastic Moduli by Indentation of Mechanically Heterogeneous Materials
,”
Front. Phys.
,
9
, pp.
1
8
.10.3389/fphy.2021.723768
25.
Rattan
,
S.
, and
Crosby
,
A. J.
,
2019
, “
Effect of Polymer Volume Fraction on Fracture Initiation in Soft Gels at Small Length Scales
,”
ACS Macro Lett.
,
8
(
5
), pp.
492
498
.10.1021/acsmacrolett.9b00086
26.
Gokgol
,
C.
,
Basdogan
,
C.
, and
Canadinc
,
D.
,
2012
, “
Estimation of Fracture Toughness of Liver Tissue: Experiments and Validation
,”
Med. Eng. Phys.
,
34
(
7
), pp.
882
891
.10.1016/j.medengphy.2011.09.030
27.
He
,
D.
, and
Hu
,
Y.
,
2020
, “
Nonlinear Visco-Poroelasticity of Gels With Different Rheological Parts
,”
ASME J. Appl. Mech.
,
87
(
7
), p.
071010
.10.1115/1.4046966
28.
He
,
D.
, and
Hu
,
Y.
,
2021
, “
A Nonlinear Visco-Poroelasticity Model for Transversely Isotropic Gels
,”
Meccanica
,
56
(
6
), pp.
1483
1504
.10.1007/s11012-020-01219-w
29.
Budday
,
S.
,
Sommer
,
G.
,
Holzapfel
,
G. A.
,
Steinmann
,
P.
, and
Kuhl
,
E.
,
2017
, “
Viscoelastic Parameter Identification of Human Brain Tissue
,”
J. Mech. Behav. Biomed. Mater.
,
74
, pp.
463
476
.10.1016/j.jmbbm.2017.07.014
30.
Hong
,
W.
,
Zhao
,
X.
,
Zhou
,
J.
, and
Suo
,
Z.
,
2008
, “
A Theory of Coupled Diffusion and Large Deformation in Polymeric Gels
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
1779
1793
.10.1016/j.jmps.2007.11.010
31.
Hu
,
Y.
, and
Suo
,
Z.
,
2012
, “
Viscoelasticity and Poroelasticity in Elastomeric Gels
,”
Acta Mech. Solida Sin.
,
25
(
5
), pp.
441
458
.10.1016/S0894-9166(12)60039-1
32.
Park
,
S.
,
Costa
,
K. D.
, and
Ateshian
,
G. A.
,
2004
, “
Microscale Frictional Response of Bovine Articular Cartilage From Atomic Force Microscopy
,”
J. Biomech.
,
37
(
11
), pp.
1679
1687
.10.1016/j.jbiomech.2004.02.017
33.
Kwon
,
H. J.
,
Kakugo
,
A.
,
Ura
,
T.
,
Okajima
,
T.
,
Tanaka
,
Y.
,
Furukawa
,
H.
,
Osada
,
Y.
, and
Gong
,
J. P.
,
2007
, “
Actin Network Formation by Unidirectional Polycation Diffusion
,”
Langmuir
,
23
(
11
), pp.
6257
6262
.10.1021/la063416k
34.
Domke
,
J.
,
Dannöhl
,
S.
,
Parak
,
W. J.
,
Müller
,
O.
,
Aicher
,
W. K.
, and
Radmacher
,
M.
,
2000
, “
Substrate Dependent Differences in Morphology and Elasticity of Living Osteoblasts Investigated by Atomic Force Microscopy
,”
Colloids Surf., B
,
19
(
4
), pp.
367
379
.10.1016/S0927-7765(00)00145-4
35.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
, Cambridge, UK.
36.
Hertz
,
H.
,
1882
, “
Ueber Die Berührung Fester Elastischer Körper
,”
Journal für die reine und angewandte Mathematik
,
1882
(
92
), pp.
156
171
.10.1515/crll.1882.92.156
37.
Sneddon
,
IN.
,
1965
, “
The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile
,”
Int. J. Eng. Sci.
,
3
(
1
), pp.
47
57
.10.1016/0020-7225(65)90019-4
38.
Love
,
A. E. H.
,
1939
, “
Boussinesq's Problem for a Rigid Cone
,”
Q. J. Math.
, os-10(
1
), pp.
161
175
.10.1093/qmath/os-10.1.161
39.
Sneddon
,
IN.
,
1948
, “
Boussinesq's Problem for a Rigid Cone
,”
Math. Proc. Cambridge Philos. Soc.
,
44
(
4
), pp.
492
507
.10.1017/S0305004100024518
40.
Sneddon
,
IN.
,
1946
, “
Boussinesq's Problem for a Flat-Ended Cylinder
,”
Math. Proc. Cambridge Philos. Soc.
,
42
(
1
), pp.
29
39
.10.1017/S0305004100022702
41.
Hui
,
C. Y.
,
Lin
,
Y. Y.
,
Chuang
,
F. U. C.
,
Shull
,
K. R.
, and
Lin
,
W. C.
,
2006
, “
A Contact Mechanics Method for Characterizing the Elastic Properties and Permeability of Gels
,”
J. Polym. Sci., Part B: Polym. Phys.
,
44
(
2
), pp.
359
370
.10.1002/polb.20613
42.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
2004
, “
Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology
,”
J. Mater. Res.
,
19
(
1
), pp.
3
20
.10.1557/jmr.2004.19.1.3
43.
Glaubitz
,
M.
,
Medvedev
,
N.
,
Pussak
,
D.
,
Hartmann
,
L.
,
Schmidt
,
S.
,
Helm
,
C. A.
, and
Delcea
,
M.
,
2014
, “
A Novel Contact Model for AFM Indentation Experiments on Soft Spherical Cell-Like Particles
,”
Soft Matter
,
10
(
35
), pp.
6732
6741
.10.1039/C4SM00788C
44.
Ding
,
Y.
,
Xu
,
G. K.
, and
Wang
,
G. F.
,
2017
, “
On the Determination of Elastic Moduli of Cells by AFM Based Indentation
,”
Sci. Rep.
, 7(1), p. 45575.10.1038/srep45575
45.
Dimitriadis
,
E. K.
,
Horkay
,
F.
,
Maresca
,
J.
,
Kachar
,
B.
, and
Chadwick
,
R. S.
,
2002
, “
Determination of Elastic Moduli of Thin Layers of Soft Material Using the Atomic Force Microscope
,”
Biophys. J.
,
82
(
5
), pp.
2798
2810
.10.1016/S0006-3495(02)75620-8
46.
Long
,
R.
,
Hall
,
M. S.
,
Wu
,
M.
, and
Hui
,
C. Y.
,
2011
, “
Effects of Gel Thickness on Microscopic Indentation Measurements of Gel Modulus
,”
Biophys. J.
,
101
(
3
), pp.
643
650
.10.1016/j.bpj.2011.06.049
47.
Yu
,
H. Y.
,
Sanday
,
S. C.
, and
Rath
,
B. B.
,
1990
, “
The Effect of Substrate on the Elastic Properties of Films Determined by the Indentation Test—Axisymmetric Boussinesq Problem
,”
J. Mech. Phys. Solids
,
38
(
6
), pp.
745
764
.10.1016/0022-5096(90)90038-6
48.
Hu
,
Y.
,
Chan
,
E. P.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2011
, “
Poroelastic Relaxation Indentation of Thin Layers of Gels
,”
J. Appl. Phys.
,
110
(
8
), p.
086103
.10.1063/1.3647758
49.
Santos
,
J. A. C.
,
Rebêlo
,
L. M.
,
Araujo
,
A. C.
,
Barros
,
E. B.
, and
De Sousa
,
J. S.
,
2012
, “
Thickness-Corrected Model for Nanoindentation of Thin Films With Conical Indenters
,”
Soft Matter
,
8
(
16
), pp.
4441
4448
.10.1039/c2sm07062f
50.
Nowatzki
,
P. J.
,
Franck
,
C.
,
Maskarinec
,
S. A.
,
Ravichandran
,
G.
, and
Tirrell
,
D. A.
,
2008
, “
Mechanically Tunable Thin Films of Photosensitive Artificial Proteins: Preparation and Characterization by Nanoindentation
,”
Macromolecules
,
41
(
5
), pp.
1839
1845
.10.1021/ma071717a
51.
Qiang
,
B.
,
Greenleaf
,
J.
,
Oyen
,
M.
, and
Zhang
,
X.
,
2011
, “
Estimating Material Elasticity by Spherical Indentation Load-Relaxation Tests on Viscoelastic Samples of Finite Thickness
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
58
(
7
), pp.
1418
1429
.10.1109/TUFFC.2011.1961
52.
Feng
,
Y.
,
Lee
,
C. H.
,
Sun
,
L.
,
Ji
,
S.
, and
Zhao
,
X.
,
2017
, “
Characterizing White Matter Tissue in Large Strain Via Asymmetric Indentation and Inverse Finite Element Modeling
,”
J. Mech. Behav. Biomed. Mater.
,
65
(
178
), pp.
490
501
.10.1016/j.jmbbm.2016.09.020
53.
Chen
,
X.
,
Zhou
,
Y.
,
Wang
,
L.
,
Santare
,
M. H.
,
Wan
,
L. Q.
, and
Lu
,
X. L.
,
2016
, “
Determining Tension–Compression Nonlinear Mechanical Properties of Articular Cartilage From Indentation Testing
,”
Ann. Biomed. Eng.
,
44
(
4
), pp.
1148
1158
.10.1007/s10439-015-1402-8
54.
Miyazaki
,
H.
, and
Hayashi
,
K.
,
1999
, “
Atomic Force Microscopic Measurement of the Mechanical Properties of Intact Endothelial Cells in Fresh Arteries
,”
Med. Biol. Eng. Comput.
,
37
(
4
), pp.
530
536
.10.1007/BF02513342
55.
Jaasma
,
M. J.
,
Jackson
,
W. M.
, and
Keaveny
,
T. M.
,
2006
, “
Measurement and Characterization of Whole-Cell Mechanical Behavior
,”
Ann. Biomed. Eng.
,
34
(
5
), pp.
748
758
.10.1007/s10439-006-9081-0
56.
Lin
,
D. C.
,
Dimitriadis
,
E. K.
, and
Horkay
,
F.
,
2007
, “
Robust Strategies for Automated AFM Force Curve Analysis - II: Adhesion-Influenced Indentation of Soft, Elastic Materials
,”
ASME J. Biomech. Eng.
,
129
(
6
), pp.
904
912
.10.1115/1.2800826
57.
Lin
,
D. C.
,
Shreiber
,
D. I.
,
Dimitriadis
,
E. K.
, and
Horkay
,
F.
,
2009
, “
Spherical Indentation of Soft Matter Beyond the Hertzian Regime: Numerical and Experimental Validation of Hyperelastic Models
,”
Biomech. Model. Mechanobiol.
,
8
(
5
), pp.
345
358
.10.1007/s10237-008-0139-9
58.
Zhang
,
M. G.
,
Cao
,
Y. P.
,
Li
,
G. Y.
, and
Feng
,
X. Q.
,
2014
, “
Spherical Indentation Method for Determining the Constitutive Parameters of Hyperelastic Soft Materials
,”
Biomech. Model. Mechanobiol.
,
13
(
1
), pp.
1
11
.10.1007/s10237-013-0481-4
59.
Korhonen
,
R. K.
,
Laasanen
,
M. S.
,
Töyräs
,
J.
,
Rieppo
,
J.
,
Hirvonen
,
J.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
,
2002
, “
Comparison of the Equilibrium Response of Articular Cartilage in Unconfined Compression, Confined Compression and Indentation
,”
J. Biomech.
,
35
(
7
), pp.
903
909
.10.1016/S0021-9290(02)00052-0
60.
Darling
,
E. M.
,
Wilusz
,
R. E.
,
Bolognesi
,
M. P.
,
Zauscher
,
S.
, and
Guilak
,
F.
,
2010
, “
Spatial Mapping of the Biomechanical Properties of the Pericellular Matrix of Articular Cartilage Measured In Situ Via Atomic Force Microscopy
,”
Biophys. J.
,
98
(
12
), pp.
2848
2856
.10.1016/j.bpj.2010.03.037
61.
Li
,
Q.
,
Doyran
,
B.
,
Gamer
,
L. W.
,
Lu
,
X. L.
,
Qin
,
L.
,
Ortiz
,
C.
,
Grodzinsky
,
A. J.
,
Rosen
,
V.
, and
Han
,
L.
,
2015
, “
Biomechanical Properties of Murine Meniscus Surface Via AFM-Based Nanoindentation
,”
J. Biomech.
,
48
(
8
), pp.
1364
1370
.10.1016/j.jbiomech.2015.02.064
62.
Miller
,
K.
,
Chinzei
,
K.
,
Orssengo
,
G.
, and
Bednarz
,
P.
,
2000
, “
Mechanical Properties of Brain Tissue in-Vivo: Experiment and Computer Simulation
,”
J. Biomech.
,
33
(
11
), pp.
1369
1376
.10.1016/S0021-9290(00)00120-2
63.
van Dommelen
,
J. A. W.
,
van der Sande
,
T. P. J.
,
Hrapko
,
M.
, and
Peters
,
G. W. M.
,
2010
, “
Mechanical Properties of Brain Tissue by Indentation: Interregional Variation
,”
J. Mech. Behav. Biomed. Mater.
,
3
(
2
), pp.
158
166
.10.1016/j.jmbbm.2009.09.001
64.
Antonovaite
,
N.
,
Beekmans
,
S. V.
,
Hol
,
E. M.
,
Wadman
,
W. J.
, and
Iannuzzi
,
D.
,
2018
, “
Regional Variations in Stiffness in Live Mouse Brain Tissue Determined by Depth-Controlled Indentation Mapping
,”
Sci. Rep.
,
8
(
1
), pp.
1
18
.10.1038/s41598-018-31035-y
65.
Last
,
J. A.
,
Thomasy
,
S. M.
,
Croasdale
,
C. R.
,
Russell
,
P.
, and
Murphy
,
C. J.
,
2012
, “
Compliance Profile of the Human Cornea as Measured by Atomic Force Microscopy
,”
Micron
,
43
(
12
), pp.
1293
1298
.10.1016/j.micron.2012.02.014
66.
Last
,
J. A.
,
Pan
,
T.
,
Ding
,
Y.
,
Reilly
,
C. M.
,
Keller
,
K.
,
Acott
,
T. S.
,
Fautsch
,
M. P.
,
Murphy
,
C. J.
, and
Russell
,
P.
,
2011
, “
Elastic Modulus Determination of Normal and Glaucomatous Human Trabecular Meshwork
,”
Investig. Ophthalmol. Vis. Sci.
,
52
(
5
), pp.
2147
2152
.10.1167/iovs.10-6342
67.
Di Mundo
,
R.
,
Recchia
,
G.
,
Parekh
,
M.
,
Ruzza
,
A.
,
Ferrari
,
S.
, and
Carbone
,
G.
,
2017
, “
Sensing Inhomogeneous Mechanical Properties of Human Corneal Descemet's Membrane With AFM Nano-Indentation
,”
J. Mech. Behav. Biomed. Mater.
,
74
, pp.
21
27
.10.1016/j.jmbbm.2017.05.019
68.
Salerno
,
F. G.
, and
Ludwig
,
M. S.
,
1999
, “
Elastic Moduli of Excised Constricted Rat Lungs
,”
J. Appl. Physiol.
,
86
(
1
), pp.
66
70
.10.1152/jappl.1999.86.1.66
69.
Shkumatov
,
A.
,
Thompson
,
M.
,
Choi
,
K. M.
,
Sicard
,
D.
,
Baek
,
K.
,
Kim
,
D. H.
,
Tschumperlin
,
D. J.
,
Prakash
,
Y. S.
, and
Kong
,
H.
,
2015
, “
Matrix Stiffness-Modulated Proliferation and Secretory Function of the Airway Smooth Muscle Cells
,”
Am. J. Physiol. - Lung Cell. Mol. Physiol.
,
308
(
11
), pp.
L1125
L1135
.10.1152/ajplung.00154.2014
70.
Nava
,
A.
,
Mazza
,
E.
,
Furrer
,
M.
,
Villiger
,
P.
, and
Reinhart
,
W. H.
,
2008
, “
In Vivo Mechanical Characterization of Human Liver
,”
Med. Image Anal.
,
12
(
2
), pp.
203
216
.10.1016/j.media.2007.10.001
71.
Plodinec
,
M.
,
Loparic
,
M.
,
Monnier
,
C. A.
,
Obermann
,
E. C.
,
Zanetti-Dallenbach
,
R.
,
Oertle
,
P.
,
Hyotyla
,
J. T.
, et al.,
2012
, “
The Nanomechanical Signature of Breast Cancer
,”
Nat. Nanotechnol.
,
7
(
11
), pp.
757
765
.10.1038/nnano.2012.167
72.
Peloquin
,
J.
,
Huynh
,
J.
,
Williams
,
R. M.
, and
Reinhart-King
,
C. A.
,
2011
, “
Indentation Measurements of the Subendothelial Matrix in Bovine Carotid Arteries
,”
J. Biomech.
,
44
(
5
), pp.
815
821
.10.1016/j.jbiomech.2010.12.018
73.
van der Valk
,
D. C.
,
van der Ven
,
C. F. T.
,
Blaser
,
M. C.
,
Grolman
,
J. M.
,
Wu
,
P. J.
,
Fenton
,
O. S.
,
Lee
,
L. H.
, et al.,
2018
, “
Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics
,”
Nanomaterials
,
8
(
5
), pp.
296
221
.10.3390/nano8050296
74.
Rotsch
,
C.
, and
Radmacher
,
M.
,
2000
, “
Drug-Induced Changes of Cytoskeletal Structure and Mechanics in Fibroblasts: An Atomic Force Microscopy Study
,”
Biophys. J.
,
78
(
1
), pp.
520
535
.10.1016/S0006-3495(00)76614-8
75.
Collinsworth
,
A. M.
,
Zhang
,
S.
,
Kraus
,
W. E.
, and
Truskey
,
G. A.
,
2002
, “
Apparent Elastic Modulus and Hysteresis of Skeletal Muscle Cells Throughout Differentiation
,”
Am. J. Physiol. Physiol.
,
283
(
4
), pp.
C1219
C1227
.10.1152/ajpcell.00502.2001
76.
Ng
,
L.
,
Hung
,
H. H.
,
Sprunt
,
A.
,
Chubinskaya
,
S.
,
Ortiz
,
C.
, and
Grodzinsky
,
A.
,
2007
, “
Nanomechanical Properties of Individual Chondrocytes and Their Developing Growth Factor-Stimulated Pericellular Matrix
,”
J. Biomech.
,
40
(
5
), pp.
1011
1023
.10.1016/j.jbiomech.2006.04.004
77.
Li
,
Q. S.
,
Lee
,
G. Y. H.
,
Ong
,
C. N.
, and
Lim
,
C. T.
,
2008
, “
AFM Indentation Study of Breast Cancer Cells
,”
Biochem. Biophys. Res. Commun.
,
374
(
4
), pp.
609
613
.10.1016/j.bbrc.2008.07.078
78.
Maloney
,
J. M.
,
Nikova
,
D.
,
Lautenschläger
,
F.
,
Clarke
,
E.
,
Langer
,
R.
,
Guck
,
J.
, and
Van Vliet
,
K. J.
,
2010
, “
Mesenchymal Stem Cell Mechanics From the Attached to the Suspended State
,”
Biophys. J.
,
99
(
8
), pp.
2479
2487
.10.1016/j.bpj.2010.08.052
79.
McKee
,
C. T.
,
Wood
,
J. A.
,
Shah
,
N. M.
,
Fischer
,
M. E.
,
Reilly
,
C. M.
,
Murphy
,
C. J.
, and
Russell
,
P.
,
2011
, “
The Effect of Biophysical Attributes of the Ocular Trabecular Meshwork Associated With Glaucoma on the Cell Response to Therapeutic Agents
,”
Biomaterials
,
32
(
9
), pp.
2417
2423
.10.1016/j.biomaterials.2010.11.071
80.
Viswanathan
,
P.
,
Chirasatitsin
,
S.
,
Ngamkham
,
K.
,
Engler
,
A. J.
, and
Battaglia
,
G.
,
2012
, “
Cell Instructive Microporous Scaffolds Through Interface Engineering
,”
J. Am. Chem. Soc.
,
134
(
49
), pp.
20103
20109
.10.1021/ja308523f
81.
Bahwini
,
T. M.
,
Zhong
,
Y.
,
Gu
,
C.
,
Nasa
,
Z.
, and
Oetomo
,
D.
,
2018
, “
Investigating the Mechanical Properties of Biological Brain Cells With Atomic Force Microscopy
,”
J. Med. Devices, Trans. ASME
,
12
(
4
), pp.
1
12
.10.1115/1.4040995
82.
Pei
,
W.
,
Chen
,
J.
,
Wang
,
C.
,
Qiu
,
S.
,
Zeng
,
J.
,
Gao
,
M.
,
Zhou
,
B.
, et al.,
2019
, “
Regional Biomechanical Imaging of Liver Cancer Cells
,”
J. Cancer
,
10
(
19
), pp.
4481
4487
.10.7150/jca.32985
83.
Soofi
,
S. S.
,
Last
,
J. A.
,
Liliensiek
,
S. J.
,
Nealey
,
P. F.
, and
Murphy
,
C. J.
,
2009
, “
The Elastic Modulus of MatrigelTM as Determined by Atomic Force Microscopy
,”
J. Struct. Biol.
,
167
(
3
), pp.
216
219
.10.1016/j.jsb.2009.05.005
84.
You
,
J.
,
Park
,
S.-A.
,
Shin
,
D.-S.
,
Patel
,
D.
,
Raghunathan
,
V. K.
,
Kim
,
M.
,
Murphy
,
C. J.
,
Tae
,
G.
, and
Revzin
,
A.
,
2013
, “
Characterizing the Effects of Heparin Gel Stiffness on Function of Primary Hepatocytes
,”
Tissue Eng. Part A
,
19
(
23–24
), pp.
2655
2663
.10.1089/ten.tea.2012.0681
85.
Hopkins
,
A. M.
,
De Laporte
,
L.
,
Tortelli
,
F.
,
Spedden
,
E.
,
Staii
,
C.
,
Atherton
,
T. J.
,
Hubbell
,
J. A.
, and
Kaplan
,
D. L.
,
2013
, “
Silk Hydrogels as Soft Substrates for Neural Tissue Engineering
,”
Adv. Funct. Mater.
,
23
(
41
), pp.
5140
5149
.10.1002/adfm.201300435
86.
Welsch
,
N.
,
Brown
,
A. C.
,
Barker
,
T. H.
, and
Lyon
,
L. A.
,
2018
, “
Enhancing Clot Properties Through Fibrin-Specific Self-Cross-Linked PEG Side-Chain Microgels
,”
Colloids Surf., B
,
166
, pp.
89
97
.10.1016/j.colsurfb.2018.03.003
87.
Henderson
,
K. J.
,
Zhou
,
T. C.
,
Otim
,
K. J.
, and
Shull
,
K. R.
,
2010
, “
Ionically Cross-Linked Triblock Copolymer Hydrogels With High Strength
,”
Macromolecules
,
43
(
14
), pp.
6193
6201
.10.1021/ma100963m
88.
Phelps
,
E. A.
,
Enemchukwu
,
N. O.
,
Fiore
,
V. F.
,
Sy
,
J. C.
,
Murthy
,
N.
,
Sulchek
,
T. A.
,
Barker
,
T. H.
, and
García
,
A. J.
,
2012
, “
Maleimide Cross‐Linked Bioactive PEG Hydrogel Exhibits Improved Reaction Kinetics and Cross‐Linking for Cell Encapsulation and In Situ Delivery
,”
Adv. Mater.
,
24
(
1
), pp.
64
70
.10.1002/adma.201103574
89.
Shin
,
S. R.
,
Jung
,
S. M.
,
Zalabany
,
M.
,
Kim
,
K.
,
Zorlutuna
,
P.
,
Kim
,
S. B.
,
Nikkhah
,
M.
, et al.,
2013
, “
Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators
,”
ACS Nano
,
7
(
3
), pp.
2369
2380
.10.1021/nn305559j
90.
Engler
,
A. J.
,
Sen
,
S.
,
Sweeney
,
H. L.
, and
Discher
,
D. E.
,
2006
, “
Matrix Elasticity Directs Stem Cell Lineage Specification
,”
Cell
,
126
(
4
), pp.
677
689
.10.1016/j.cell.2006.06.044
91.
Wood
,
J. A.
,
Shah
,
N. M.
,
McKee
,
C. T.
,
Hughbanks
,
M. L.
,
Liliensiek
,
S. J.
,
Russell
,
P.
, and
Murphy
,
C. J.
,
2011
, “
The Role of Substratum Compliance of Hydrogels on Vascular Endothelial Cell Behavior
,”
Biomaterials
,
32
(
22
), pp.
5056
5064
.10.1016/j.biomaterials.2011.03.054
92.
Chaudhury
,
M. K.
, and
Goohpattader
,
P. S.
,
2012
, “
Noise-Activated Dissociation of Soft Elastic Contacts
,”
Eur. Phys. J. E
,
35
(
12
), pp.
1
9
.10.1140/epje/i2012-12131-9
93.
Chaudhuri
,
O.
,
Koshy
,
S. T.
,
Branco Da Cunha
,
C.
,
Shin
,
J. W.
,
Verbeke
,
C. S.
,
Allison
,
K. H.
, and
Mooney
,
D. J.
,
2014
, “
Extracellular Matrix Stiffness and Composition Jointly Regulate the Induction of Malignant Phenotypes in Mammary Epithelium
,”
Nat. Mater.
,
13
(
10
), pp.
970
978
.10.1038/nmat4009
94.
Luque
,
T.
,
Kang
,
M. S.
,
Schaffer
,
D. V.
, and
Kumar
,
S.
,
2016
, “
Microelastic Mapping of the Rat Dentate Gyrus
,”
R. Soc. Open Sci.
,
3
(
4
), pp.
150702
150707
.10.1098/rsos.150702
95.
Enemchukwu
,
N. O.
,
Cruz-Acuña
,
R.
,
Bongiorno
,
T.
,
Johnson
,
C. T.
,
García
,
J. R.
,
Sulchek
,
T.
, and
García
,
A. J.
,
2016
, “
Synthetic Matrices Reveal Contributions of ECM Biophysical and Biochemical Properties to Epithelial Morphogenesis
,”
J. Cell Biol.
,
212
(
1
), pp.
113
124
.10.1083/jcb.201506055
96.
Rammensee
,
S.
,
Kang
,
M. S.
,
Georgiou
,
K.
,
Kumar
,
S.
, and
Schaffer
,
D. V.
,
2017
, “
Dynamics of Mechanosensitive Neural Stem Cell Differentiation
,”
Stem Cells
,
35
(
2
), pp.
497
506
.10.1002/stem.2489
97.
Mahaffy
,
R. E.
,
Shih
,
C. K.
,
MacKintosh
,
F. C.
, and
Käs
,
J.
,
2000
, “
Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells
,”
Phys. Rev. Lett.
,
85
(
4
), pp.
880
883
.10.1103/PhysRevLett.85.880
98.
Mattice
,
J. M.
,
Lau
,
A. G.
,
Oyen
,
M. L.
, and
Kent
,
R. W.
,
2006
, “
Spherical Indentation Load-Relaxation of Soft Biological Tissues
,”
J. Mater. Res.
,
21
(
8
), pp.
2003
2010
.10.1557/jmr.2006.0243
99.
Lake
,
S. P.
,
Hald
,
E. S.
, and
Barocas
,
V. H.
,
2011
, “
Collagen‐Agarose Co‐Gels as a Model for Collagen–Matrix Interaction in Soft Tissues Subjected to Indentation
,”
J. Biomed. Mater. Res., Part A
,
99A
(
4
), pp.
507
515
.10.1002/jbm.a.33183
100.
Biot
,
M. A.
,
1956
, “
Theory of Deformation of a Porous Viscoelastic Anisotropic Solid
,”
J. Appl. Phys.
,
27
(
5
), pp.
459
467
.10.1063/1.1722402
101.
Setton
,
L. A.
,
Zhu
,
W.
, and
Mow
,
V. C.
,
1993
, “
The Biphasic Poroviscoelastic Behavior of Articular Cartilage: Role of the Surface Zone in Governing the Compressive Behavior
,”
J. Biomech.
,
26
(
4–5
), pp.
581
592
.10.1016/0021-9290(93)90019-B
102.
Wang
,
X.
, and
Hong
,
W.
,
2012
, “
A Visco-Poroelastic Theory for Polymeric Gels
,”
Proc. R. Soc. A
,
468
(
2148
), pp.
3824
3841
.10.1098/rspa.2012.0385
103.
Findley
,
W.
,
Lai
,
J.
, and
Onaran
,
K.
,
1989
,
Creep and Relaxation of Nonlinear Viscoelastic Materials: With an Introduction to Linear Viscoelasticity
, Dover Publications, New York
.
104.
Christensen
,
R. M.
,
1982
,
Theory of Viscoelasticity
,
Academic Press, New York
.
105.
Park
,
S. W.
, and
Schapery
,
R. A.
,
1999
, “
Methods of Interconversion Between Linear Viscoelastic Material Functions. Part I—A Numerical Method Based on Prony Series
,”
Int. J. Solids Struct.
,
36
(
11
), pp.
1653
1675
.10.1016/S0020-7683(98)00055-9
106.
Lee
,
E. H.
, and
Radok
,
J. R. M.
,
1960
, “
The Contact Problem for Viscoelastic Bodies
,”
ASME J. Appl. Mech. Trans. ASME
,
27
(
3
), pp.
438
444
.10.1115/1.3644020
107.
Cheng
,
Y. T.
,
Ni
,
W.
, and
Cheng
,
C. M.
,
2006
, “
Nonlinear Analysis of Oscillatory Indentation in Elastic and Viscoelastic Solids
,”
Phys. Rev. Lett.
,
97
(
7
), pp.
1
4
.10.1103/PhysRevLett.97.075506
108.
Gorb
,
S.
,
Jiao
,
Y.
, and
Scherge
,
M.
,
2000
, “
Ultrastructural Architecture and Mechanical Properties of Attachment Pads in Tettigonia Viridissima (Orthoptera Tettigoniidae)
,”
J. Comp. Physiol.
,
186
(
9
), pp.
821
831
.10.1007/s003590000135
109.
Gefen
,
A.
, and
Margulies
,
S. S.
,
2004
, “
Are In Vivo and In Situ Brain Tissues Mechanically Similar?
,”
J. Biomech.
,
37
(
9
), pp.
1339
1352
.10.1016/j.jbiomech.2003.12.032
110.
He
,
D.
,
Kim
,
D. A.
,
Ku
,
D. N.
, and
Hu
,
Y.
,
2022
, “
Viscoporoelasticity of Coagulation Blood Clots
,”
Extreme Mech. Lett.
,
56
, p.
101859
.10.1016/j.eml.2022.101859
111.
Toyjanova
,
J.
,
Hannen
,
E.
,
Bar-Kochba
,
E.
,
Darling
,
E. M.
,
Henann
,
D. L.
, and
Franck
,
C.
,
2014
, “
3D Viscoelastic Traction Force Microscopy
,”
Soft Matter
,
10
(
40
), pp.
8095
8106
.10.1039/C4SM01271B
112.
Herbert
,
E. G.
,
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
2008
, “
Nanoindentation and the Dynamic Characterization of Viscoelastic Solids
,”
J. Phys. D. Appl. Phys.
,
41
(
7
), p.
074021
.10.1088/0022-3727/41/7/074021
113.
Li
,
Q.
,
Qu
,
F.
,
Han
,
B.
,
Wang
,
C.
,
Li
,
H.
,
Mauck
,
R. L.
, and
Han
,
L.
,
2017
, “
Micromechanical Anisotropy and Heterogeneity of the Meniscus Extracellular Matrix
,”
Acta Biomater.
,
54
, pp.
356
366
.10.1016/j.actbio.2017.02.043
114.
Yoo
,
L.
,
Reed
,
J.
,
Shin
,
A.
,
Kung
,
J.
,
Gimzewski
,
J. K.
,
Poukens
,
V.
,
Goldberg
,
R. A.
, et al.,
2011
, “
Characterization of Ocular Tissues Using Microindentation and Hertzian Viscoelastic Models
,”
Investig. Ophthalmol. Vis. Sci.
,
52
(
6
), pp.
3475
3482
.10.1167/iovs.10-6867
115.
Yao
,
W.
,
Yoshida
,
K.
,
Fernandez
,
M.
,
Vink
,
J.
,
Wapner
,
R. J.
,
Ananth
,
C. V.
,
Oyen
,
M. L.
, and
Myers
,
K. M.
,
2014
, “
Measuring the Compressive Viscoelastic Mechanical Properties of Human Cervical Tissue Using Indentation
,”
J. Mech. Behav. Biomed. Mater.
,
34
, pp.
18
26
.10.1016/j.jmbbm.2014.01.016
116.
Qiu
,
S.
,
Zhao
,
X.
,
Chen
,
J.
,
Zeng
,
J.
,
Chen
,
S.
,
Chen
,
L.
,
Meng
,
Y.
, et al.,
2018
, “
Characterizing Viscoelastic Properties of Breast Cancer Tissue in a Mouse Model Using Indentation
,”
J. Biomech.
,
69
, pp.
81
89
.10.1016/j.jbiomech.2018.01.007
117.
Alcaraz
,
J.
,
Buscemi
,
L.
,
Grabulosa
,
M.
,
Trepat
,
X.
,
Fabry
,
B.
,
Farré
,
R.
, and
Navajas
,
D.
,
2003
, “
Microrheology of Human Lung Epithelial Cells Measured by Atomic Force Microscopy
,”
Biophys. J.
,
84
(
3
), pp.
2071
2079
.10.1016/S0006-3495(03)75014-0
118.
Darling
,
E. M.
,
Zauscher
,
S.
,
Block
,
J. A.
, and
Guilak
,
F.
,
2007
, “
A Thin-Layer Model for Viscoelastic, Stress-Relaxation Testing of Cells Using Atomic Force Microscopy: Do Cell Properties Reflect Metastatic Potential?
,”
Biophys. J.
,
92
(
5
), pp.
1784
1791
.10.1529/biophysj.106.083097
119.
Darling
,
E. M.
,
Topel
,
M.
,
Zauscher
,
S.
,
Vail
,
T. P.
, and
Guilak
,
F.
,
2008
, “
Viscoelastic Properties of Human Mesenchymally-Derived Stem Cells and Primary Osteoblasts, Chondrocytes, and Adipocytes
,”
J. Biomech.
,
41
(
2
), pp.
454
464
.10.1016/j.jbiomech.2007.06.019
120.
Ketene
,
A. N.
,
Schmelz
,
E. M.
,
Roberts
,
P. C.
, and
Agah
,
M.
,
2012
, “
The Effects of Cancer Progression on the Viscoelasticity of Ovarian Cell Cytoskeleton Structures
,”
Nanomed. Nanotechnol., Biol. Med.
,
8
(
1
), pp.
93
102
.10.1016/j.nano.2011.05.012
121.
Sousa
,
F. B.
,
Babu
,
P. K. V.
,
Radmacher
,
M.
,
Oliveira
,
C. L. N.
, and
De Sousa
,
J. S.
,
2021
, “
Multiple Power-Law Viscoelastic Relaxation in Time and Frequency Domains With Atomic Force Microscopy
,”
J. Phys. D. Appl. Phys.
,
54
(
33
), p.
335401
.10.1088/1361-6463/ac02fa
122.
Guan
,
D.
,
Shen
,
Y.
,
Zhang
,
R.
,
Huang
,
P.
,
Lai
,
P. Y.
, and
Tong
,
P.
,
2021
, “
Unified Description of Compressive Modulus Revealing Multiscale Mechanics of Living Cells
,”
Phys. Rev. Res.
,
3
(
4
), p.
43166
.10.1103/PhysRevResearch.3.043166
123.
Coughlin
,
M. F.
,
Bielenberg
,
D. R.
,
Lenormand
,
G.
,
Marinkovic
,
M.
,
Waghorne
,
C. G.
,
Zetter
,
B. R.
, and
Fredberg
,
J. J.
,
2013
, “
Cytoskeletal Stiffness, Friction, and Fluidity of Cancer Cell Lines With Different Metastatic Potential
,”
Clin. Exp. Metastasis
,
30
(
3
), pp.
237
250
.10.1007/s10585-012-9531-z
124.
de Sousa
,
J. S.
,
Freire
,
R. S.
,
Sousa
,
F. D.
,
Radmacher
,
M.
,
Silva
,
A. F. B.
,
Ramos
,
M. V.
,
Monteiro-Moreira
,
A. C. O.
, et al.,
2020
, “
Double Power-Law Viscoelastic Relaxation of Living Cells Encodes Motility Trends
,”
Sci. Rep.
,
10
(
1
), pp.
1
10
.10.1038/s41598-020-61631-w
125.
Brás
,
M. M.
,
Cruz
,
T. B.
,
Maia
,
A. F.
,
Oliveira
,
M. J.
,
Sousa
,
S. R.
,
Granja
,
P. L.
, and
Radmacher
,
M.
,
2022
, “
Mechanical Properties of Colorectal Cancer Cells Determined by Dynamic Atomic Force Microscopy: A Novel Biomarker
,”
Cancers (Basel)
,
14
(
20
), p.
5053
.10.3390/cancers14205053
126.
Rebelo
,
L. M.
,
De Sousa
,
J. S.
,
Mendes Filho
,
J.
, and
Radmacher
,
M.
,
2013
, “
Comparison of the Viscoelastic Properties of Cells From Different Kidney Cancer Phenotypes Measured With Atomic Force Microscopy
,”
Nanotechnology
,
24
(
5
), p.
055102
.10.1088/0957-4484/24/5/055102
127.
Yim
,
E. K. F.
,
Darling
,
E. M.
,
Kulangara
,
K.
,
Guilak
,
F.
, and
Leong
,
K. W.
,
2010
, “
Nanotopography-Induced Changes in Focal Adhesions, Cytoskeletal Organization, and Mechanical Properties of Human Mesenchymal Stem Cells
,”
Biomaterials
,
31
(
6
), pp.
1299
1306
.10.1016/j.biomaterials.2009.10.037
128.
Rianna
,
C.
, and
Radmacher
,
M.
,
2017
, “
Comparison of Viscoelastic Properties of Cancer and Normal Thyroid Cells on Different Stiffness Substrates
,”
Eur. Biophys. J.
,
46
(
4
), pp.
309
324
.10.1007/s00249-016-1168-4
129.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.10.1115/1.3138202
130.
Chester
,
S. A.
, and
Anand
,
L.
,
2010
, “
A Coupled Theory of Fluid Permeation and Large Deformations for Elastomeric Materials
,”
J. Mech. Phys. Solids
,
58
(
11
), pp.
1879
1906
.10.1016/j.jmps.2010.07.020
131.
Doi
,
M.
,
2009
, “
Gel Dynamics
,”
J. Phys. Soc. Jpn.
,
78
(
5
), pp.
1
19
.10.1143/JPSJ.78.052001
132.
Berteau
,
J. P.
,
Oyen
,
M.
, and
Shefelbine
,
S. J.
,
2016
, “
Permeability and Shear Modulus of Articular Cartilage in Growing Mice
,”
Biomech. Model. Mechanobiol.
,
15
(
1
), pp.
205
212
.10.1007/s10237-015-0671-3
133.
Simon
,
B. R.
,
1992
, “
Multiphase Poroelastic Finite Element Models for Soft Tissue Structures
,”
ASME Appl. Mech. Rev.
,
45
(
6
), pp.
191
218
.10.1115/1.3121397
134.
Hu
,
Y.
,
Chen
,
X.
,
Whitesides
,
G. M.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2011
, “
Indentation of Polydimethylsiloxane Submerged in Organic Solvents
,”
J. Mater. Res.
,
26
(
6
), pp.
785
795
.10.1557/jmr.2010.35
135.
Hu
,
Y.
,
You
,
J. O.
,
Auguste
,
D. T.
,
Suo
,
Z.
, and
Vlassak
,
J. J.
,
2012
, “
Indentation: A Simple, Nondestructive Method for Characterizing the Mechanical and Transport Properties of PH-Sensitive Hydrogels
,”
J. Mater. Res.
,
27
(
1
), pp.
152
160
.10.1557/jmr.2011.368
136.
Berry
,
J. D.
,
Biviano
,
M.
, and
Dagastine
,
R. R.
,
2020
, “
Poroelastic Properties of Hydrogel Microparticles
,”
Soft Matter
,
16
(
22
), pp.
5314
5324
.10.1039/D0SM00191K
137.
Shin
,
D.
, and
Athanasiou
,
K.
,
1999
, “
Cytoindentation for Obtaining Cell Biomechanical Properties
,”
J. Orthop. Res.
,
17
(
6
), pp.
880
890
.10.1002/jor.1100170613
138.
Moeendarbary
,
E.
,
Valon
,
L.
,
Fritzsche
,
M.
,
Harris
,
A. R.
,
Moulding
,
D. A.
,
Thrasher
,
A. J.
,
Stride
,
E.
,
Mahadevan
,
L.
, and
Charras
,
G. T.
,
2013
, “
The Cytoplasm of Living Cells Behaves as a Poroelastic Material
,”
Nat. Mater.
,
12
(
3
), pp.
253
261
.10.1038/nmat3517
139.
Cao
,
L.
,
Youn
,
I.
,
Guilak
,
F.
, and
Setton
,
L. A.
,
2006
, “
Compressive Properties of Mouse Articular Cartilage Determined in a Novel Micro-Indentation Test Method and Biphasic Finite Element Model
,”
ASME J. Biomech. Eng.
,
128
(
5
), pp.
766
771
.10.1115/1.2246237
140.
Nia
,
H. T.
,
Han
,
L.
,
Li
,
Y.
,
Ortiz
,
C.
, and
Grodzinsky
,
A.
,
2011
, “
Poroelasticity of Cartilage at the Nanoscale
,”
Biophys. J.
,
101
(
9
), pp.
2304
2313
.10.1016/j.bpj.2011.09.011
141.
Lai
,
Y.
, and
Hu
,
Y.
,
2018
, “
Probing the Swelling-Dependent Mechanical and Transport Properties of Polyacrylamide Hydrogels Through AFM-Based Dynamic Nanoindentation
,”
Soft Matter
,
14
(
14
), pp.
2619
2627
.10.1039/C7SM02351K
142.
Hou
,
X.
,
Hu
,
Y.
,
Grinthal
,
A.
,
Khan
,
M.
, and
Aizenberg
,
J.
,
2015
, “
Liquid-Based Gating Mechanism With Tunable Multiphase Selectivity and Antifouling Behaviour
,”
Nature
,
519
(
7541
), pp.
70
73
.10.1038/nature14253
143.
Nia
,
H. T.
,
Bozchalooi
,
I. S.
,
Li
,
Y.
,
Han
,
L.
,
Hung
,
H. H.
,
Frank
,
E.
,
Youcef-Toumi
,
K.
,
Ortiz
,
C.
, and
Grodzinsky
,
A.
,
2013
, “
High-Bandwidth AFM-Based Rheology Reveals That Cartilage is Most Sensitive to High Loading Rates at Early Stages of Impairment
,”
Biophys. J.
,
104
(
7
), pp.
1529
1537
.10.1016/j.bpj.2013.02.048
144.
Biot
,
M. A.
,
1954
, “
Theory of Stress‐Strain Relations in Anisotropic Viscoelasticity and Relaxation Phenomena
,”
J. Appl. Phys.
,
25
(
11
), pp.
1385
1391
.10.1063/1.1721573
145.
Greiner
,
A.
,
Reiter
,
N.
,
Paulsen
,
F.
,
Holzapfel
,
G. A.
,
Steinmann
,
P.
,
Comellas
,
E.
, and
Budday
,
S.
,
2021
, “
Poro-Viscoelastic Effects During Biomechanical Testing of Human Brain Tissue
,”
Front. Mech. Eng.
,
7
, pp.
1
18
.10.3389/fmech.2021.708350
146.
Galli
,
M.
,
Fornasiere
,
E.
,
Cugnoni
,
J.
, and
Oyen
,
M. L.
,
2011
, “
Poroviscoelastic Characterization of Particle-Reinforced Gelatin Gels Using Indentation and Homogenization
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
4
), pp.
610
617
.10.1016/j.jmbbm.2011.01.009
147.
McGann
,
M. E.
,
Bonitsky
,
C. M.
,
Ovaert
,
T. C.
, and
Wagner
,
D. R.
,
2014
, “
The Effect of Collagen Crosslinking on the Biphasic Poroviscoelastic Cartilage Properties Determined From a Semi-Automated Microindentation Protocol for Stress Relaxation
,”
J. Mech. Behav. Biomed. Mater.
,
34
, pp.
264
272
.10.1016/j.jmbbm.2014.02.013
148.
Chan
,
E. P.
,
Deeyaa
,
B.
,
Johnson
,
P. M.
, and
Stafford
,
C. M.
,
2012
, “
Poroelastic Relaxation of Polymer-Loaded Hydrogels
,”
Soft Matter
,
8
(
31
), pp.
8234
8240
.10.1039/c2sm25363a
149.
Strange
,
D. G. T.
,
Fletcher
,
T. L.
,
Tonsomboon
,
K.
,
Brawn
,
H.
,
Zhao
,
X.
, and
Oyen
,
M. L.
,
2013
, “
Separating Poroviscoelastic Deformation Mechanisms in Hydrogels
,”
Appl. Phys. Lett.
,
102
(
3
), p.
031913
.10.1063/1.4789368
150.
Galli
,
M.
,
Comley
,
K. S. C.
,
Shean
,
T. A. V.
, and
Oyen
,
M. L.
,
2009
, “
Viscoelastic and Poroelastic Mechanical Characterization of Hydrated Gels
,”
J. Mater. Res.
,
24
(
3
), pp.
973
979
.10.1557/jmr.2009.0129
151.
Kovalev
,
A.
,
Filippov
,
A.
, and
Gorb
,
S. N.
,
2018
, “
Slow Viscoelastic Response of Resilin
,”
J. Comp. Physiol. A
,
204
(
4
), pp.
409
417
.10.1007/s00359-018-1248-2
152.
Wu
,
G.
,
Gotthardt
,
M.
, and
Gollasch
,
M.
,
2020
, “
Assessment of Nanoindentation in Stiffness Measurement of Soft Biomaterials: Kidney, Liver, Spleen and Uterus
,”
Sci. Rep.
,
10
(
1
), pp.
1
11
.10.1038/s41598-020-75738-7
153.
Zhu
,
X.
,
Siamantouras
,
E.
,
Liu
,
K. K.
, and
Liu
,
X.
,
2016
, “
Determination of Work of Adhesion of Biological Cell Under AFM Bead Indentation
,”
J. Mech. Behav. Biomed. Mater.
,
56
, pp.
77
86
.10.1016/j.jmbbm.2015.11.034
154.
Sudre
,
G.
,
Olanier
,
L.
,
Tran
,
Y.
,
Hourdet
,
D.
, and
Creton
,
C.
,
2012
, “
Reversible Adhesion Between a Hydrogel and a Polymer Brush
,”
Soft Matter
,
8
(
31
), pp.
8184
8193
.10.1039/c2sm25868d
155.
Macron
,
J.
,
Bresson
,
B.
,
Tran
,
Y.
,
Hourdet
,
D.
, and
Creton
,
C.
,
2018
, “
Equilibrium and Out-of-Equilibrium Adherence of Hydrogels Against Polymer Brushes
,”
Macromolecules
,
51
(
19
), pp.
7556
7566
.10.1021/acs.macromol.8b01063
156.
Coles
,
J. M.
,
Blum
,
J. J.
,
Jay
,
G. D.
,
Darling
,
E. M.
,
Guilak
,
F.
, and
Zauscher
,
S.
,
2008
, “
In Situ Friction Measurement on Murine Cartilage by Atomic Force Microscopy
,”
J. Biomech.
,
41
(
3
), pp.
541
548
.10.1016/j.jbiomech.2007.10.013
157.
Ballance
,
W. C.
,
Oh
,
I.
,
Lai
,
Y.
,
Elhebeary
,
M.
,
Saif
,
T.
,
Hu
,
Y.
, and
Kong
,
H.
,
2019
, “
Vibration at Structural Resonance Frequency of Hydrophilic Substrates Enhances Biofilm Removal
,”
Sens. Actuators, B
,
299
, p.
126950
.10.1016/j.snb.2019.126950
158.
Maynard
,
S. A.
,
Gelmi
,
A.
,
Skaalure
,
S. C.
,
Pence
,
I. J.
,
Lee-Reeves
,
C.
,
Sero
,
J. E.
,
Whittaker
,
T. E.
, and
Stevens
,
M. M.
,
2020
, “
Nanoscale Molecular Quantification of Stem Cell-Hydrogel Interactions
,”
ACS Nano
,
14
(
12
), pp.
17321
17332
.10.1021/acsnano.0c07428
159.
Dompé
,
M.
,
Cedano-Serrano
,
F. J.
,
Vahdati
,
M.
,
van Westerveld
,
L.
,
Hourdet
,
D.
,
Creton
,
C.
,
van der Gucht
,
J.
,
Kodger
,
T.
, and
Kamperman
,
M.
,
2020
, “
Underwater Adhesion of Multiresponsive Complex Coacervates
,”
Adv. Mater. Interfaces
,
7
(
4
), p.
1901785
.10.1002/admi.201901785
160.
Hasan
,
M. M.
, and
Dunn
,
A. C.
,
2023
, “
Fewer Polymer Chains but Higher Adhesion: How Gradient-Stiffness Hydrogel Layers Mediate Adhesion Through Network Stretch
,”
J. Chem. Phys.
,
159
(
18
), p.
184706
.10.1063/5.0174530
161.
Sirghi
,
L.
,
Ponti
,
J.
,
Broggi
,
F.
, and
Rossi
,
F.
,
2008
, “
Probing Elasticity and Adhesion of Live Cells by Atomic Force Microscopy Indentation
,”
Eur. Biophys. J.
,
37
(
6
), pp.
935
945
.10.1007/s00249-008-0311-2
162.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London, A
,
324
(
1558
), pp.
301
313
.10.1098/rspa.1971.0141
163.
Derjaguin
,
B.
,
Muller
,
V.
, and
Toporov
,
Y.
,
1975
, “
Effect of Contact Deformation on the Adhesion of Elastic Solids
,”
J. Colloid Interface Sci.
,
53
(
2
), pp.
314
326
.10.1016/0021-9797(75)90018-1
164.
Maugis
,
D.
,
1992
, “
Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model
,”
J. Colloid Interface Sci.
,
150
(
1
), pp.
243
269
.10.1016/0021-9797(92)90285-T
165.
Barthel
,
E.
,
1998
, “
On the Description of the Adhesive Contact of Spheres With Arbitrary Interaction Potentials
,”
J. Colloid Interface Sci.
,
200
(
1
), pp.
7
18
.10.1006/jcis.1997.5309
166.
Grierson
,
D. S.
,
Flater
,
E. E.
, and
Carpick
,
R. W.
,
2005
, “
Accounting for the JKR–DMT Transition in Adhesion and Friction Measurements With Atomic Force Microscopy
,”
J. Adhes. Sci. Technol.
,
19
(
3–5
), pp.
291
311
.10.1163/1568561054352685
167.
Tabor
,
D.
,
1977
, “
Surface Forces and Surface Interactions
,”
J. Colloid Interface Sci.
,
58
(
1
), pp.
2
13
.10.1016/0021-9797(77)90366-6
168.
Pussak
,
D.
,
Ponader
,
D.
,
Mosca
,
S.
,
Pompe
,
T.
,
Hartmann
,
L.
, and
Schmidt
,
S.
,
2014
, “
Specific Adhesion of Carbohydrate Hydrogel Particles in Competition With Multivalent Inhibitors Evaluated by AFM
,”
Langmuir
,
30
(
21
), pp.
6142
6150
.10.1021/la5010006
169.
Efremov
,
Y. M.
,
Bagrov
,
D. V.
,
Kirpichnikov
,
M. P.
, and
Shaitan
,
K. V.
,
2015
, “
Application of the Johnson-Kendall-Roberts Model in AFM-Based Mechanical Measurements on Cells and Gel
,”
Colloids Surf., B
,
134
, pp.
131
139
.10.1016/j.colsurfb.2015.06.044
170.
Lai
,
Y.
, and
Hu
,
Y.
,
2021
, “
The Relation Between Adhesion Properties and Network Properties of Hydrogels: A Study Based on an Indentation Adhesion Method
,”
Mech. Mater.
,
159
, p.
103877
.10.1016/j.mechmat.2021.103877
171.
Zheng
,
S.
,
Cohen
,
N.
, and
Liu
,
Z.
,
2022
, “
Large Deformation Adhesion Study of Polymetric Hydrogel Under Different Stimuli
,”
Mech. Mater.
,
165
, p.
104174
.10.1016/j.mechmat.2021.104174
172.
Style
,
R. W.
,
Hyland
,
C.
,
Boltyanskiy
,
R.
,
Wettlaufer
,
J. S.
, and
Dufresne
,
E. R.
,
2013
, “
Surface Tension and Contact With Soft Elastic Solids
,”
Nat. Commun.
,
4
(
1
), pp.
1
6
.10.1038/ncomms3728
173.
Xu
,
X.
,
Jagota
,
A.
, and
Hui
,
C. Y.
,
2014
, “
Effects of Surface Tension on the Adhesive Contact of a Rigid Sphere to a Compliant Substrate
,”
Soft Matter
,
10
(
26
), pp.
4625
4632
.10.1039/C4SM00216D
174.
Cao
,
Z.
,
Stevens
,
M. J.
, and
Dobrynin
,
A. V.
,
2014
, “
Adhesion and Wetting of Nanoparticles on Soft Surfaces
,”
Macromolecules
,
47
(
9
), pp.
3203
3209
.10.1021/ma500317q
175.
Hui
,
C. Y.
,
Liu
,
T.
,
Salez
,
T.
,
Raphael
,
E.
, and
Jagota
,
A.
,
2015
, “
Indentation of a Rigid Sphere Into an Elastic Substrate With Surface Tension and Adhesion
,”
Proc. R. Soc. A
,
471
(
2175
), p.
20140727
.10.1098/rspa.2014.0727
176.
Xu
,
Q.
,
Jensen
,
K. E.
,
Boltyanskiy
,
R.
,
Sarfati
,
R.
,
Style
,
R. W.
, and
Dufresne
,
E. R.
,
2017
, “
Direct Measurement of Strain-Dependent Solid Surface Stress
,”
Nat. Commun.
,
8
(
1
), pp.
1
6
.10.1038/s41467-017-00636-y
177.
Liu
,
Z.
,
Jensen
,
K. E.
,
Xu
,
Q.
,
Style
,
R. W.
,
Dufresne
,
E. R.
,
Jagota
,
A.
, and
Hui
,
C. Y.
,
2019
, “
Effects of Strain-Dependent Surface Stress on the Adhesive Contact of a Rigid Sphere to a Compliant Substrate
,”
Soft Matter
,
15
(
10
), pp.
2223
2231
.10.1039/C8SM02579G
178.
Liu
,
T.
,
Jagota
,
A.
, and
Hui
,
C.
,
2016
, “
Effect of Surface Tension on the Adhesion Between a Rigid Flat Punch and a Semi-Infinite Neo-Hookean Half-Space
,”
Extreme Mech. Lett.
,
9
, pp.
310
316
.10.1016/j.eml.2016.09.005
179.
Abramson
,
A.
,
Caffarel-Salvador
,
E.
,
Soares
,
V.
,
Minahan
,
D.
,
Tian
,
R. Y.
,
Lu
,
X.
,
Dellal
,
D.
, et al.,
2019
, “
A Luminal Unfolding Microneedle Injector for Oral Delivery of Macromolecules
,”
Nat. Med.
,
25
(
10
), pp.
1512
1518
.10.1038/s41591-019-0598-9
180.
Zhang
,
B.
, and
Anderson
,
P. S. L.
,
2022
, “
Modelling Biological Puncture: A Mathematical Framework for Determining the Energetics and Scaling
,”
J. R. Soc. Interface
,
19
(
195
), p.
20220559
.10.1098/rsif.2022.0559
181.
Whitenack
,
L. B.
, and
Motta
,
P. J.
,
2010
, “
Performance of Shark Teeth During Puncture and Draw: Implications for the Mechanics of Cutting
,”
Biol. J. Linn. Soc.
,
100
(
2
), pp.
271
286
.10.1111/j.1095-8312.2010.01421.x
182.
Anderson
,
P. S. L.
,
Lacosse
,
J.
, and
Pankow
,
M.
,
2016
, “
Point of Impact: The Effect of Size and Speed on Puncture Mechanics
,”
Interface Focus
,
6
(
3
), p.
20150111
.10.1098/rsfs.2015.0111
183.
Loizidou
,
E. Z.
,
Inoue
,
N. T.
,
Ashton-Barnett
,
J.
,
Barrow
,
D. A.
, and
Allender
,
C. J.
,
2016
, “
Evaluation of Geometrical Effects of Microneedles on Skin Penetration by CT Scan and Finite Element Analysis
,”
Eur. J. Pharm. Biopharm.
,
107
, pp.
1
6
.10.1016/j.ejpb.2016.06.023
184.
Terzano
,
M.
,
Dini
,
D.
,
Rodriguez y Baena
,
F.
,
Spagnoli
,
A.
, and
Oldfield
,
M.
,
2020
, “
An Adaptive Finite Element Model for Steerable Needles
,”
Biomech. Model. Mechanobiol.
,
19
(
5
), pp.
1809
1825
.10.1007/s10237-020-01310-x
185.
Misra
,
S.
,
Reed
,
K. B.
,
Douglas
,
A. S.
,
Ramesh
,
K. T.
, and
Okamura
,
A. M.
,
2008
, “
Needle-Tissue Interaction Forces for Bevel-Tip Steerable Needles
,”
2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Scottsdale, AZ
, Oct. 19–22, pp.
224
231
.10.1109/BIOROB.2008.4762872
186.
Kundanati
,
L.
,
Guarino
,
R.
,
Menegon
,
M.
, and
Pugno
,
N. M.
,
2020
, “
Mechanics of Snake Biting: Experiments and Modelling
,”
J. Mech. Behav. Biomed. Mater.
,
112
, p.
104020
.10.1016/j.jmbbm.2020.104020
187.
Shergold
,
O. A.
, and
Fleck
,
N. A.
,
2005
, “
Experimental Investigation Into the Deep Penetration of Soft Solids by Sharp and Blunt Punches, With Application to the Piercing of Skin
,”
ASME J. Biomech. Eng.
,
127
(
5
), pp.
838
848
.10.1115/1.1992528
188.
Rostami
,
M.
, and
Ahmadian
,
M. T.
,
2023
, “
Numerical Investigation of Force and Deflection of Nanoneedle Penetration Into Cell Using Finite Element Approach: Parameter Study and Experimental Validation of Results
,”
Int. J. Numer. Method. Biomed. Eng.
,
39
(
9
), p.
e3749
.10.1002/cnm.3749
189.
Spagnoli
,
A.
,
Terzano
,
M.
,
Brighenti
,
R.
,
Artoni
,
F.
, and
Ståhle
,
P.
,
2018
, “
The Fracture Mechanics in Cutting: A Comparative Study on Hard and Soft Polymeric Materials
,”
Int. J. Mech. Sci.
,
148
, pp.
554
564
.10.1016/j.ijmecsci.2018.09.013
190.
Jushiddi
,
M. G.
,
Mani
,
A.
,
Silien
,
C.
,
Tofail
,
S. A. M.
,
Tiernan
,
P.
, and
Mulvihill
,
J. J. E.
,
2021
, “
A Computational Multilayer Model to Simulate Hollow Needle Insertion Into Biological Porcine Liver Tissue
,”
Acta Biomater.
,
136
, pp.
389
401
.10.1016/j.actbio.2021.09.057
191.
Long
,
R.
, and
Hui
,
C. Y.
,
2016
, “
Fracture Toughness of Hydrogels: Measurement and Interpretation
,”
Soft Matter
,
12
(
39
), pp.
8069
8086
.10.1039/C6SM01694D
192.
Long
,
R.
,
Hui
,
C. Y.
,
Gong
,
J. P.
, and
Bouchbinder
,
E.
,
2021
, “
The Fracture of Highly Deformable Soft Materials: A Tale of Two Length Scales
,”
Annu. Rev. Condens. Matter Phys.
,
12
(
1
), pp.
71
94
.10.1146/annurev-conmatphys-042020-023937
193.
Fakhouri
,
S.
,
Hutchens
,
S. B.
, and
Crosby
,
A. J.
,
2015
, “
Puncture Mechanics of Soft Solids
,”
Soft Matter
,
11
(
23
), pp.
4723
4730
.10.1039/C5SM00230C
194.
Fregonese
,
S.
, and
Bacca
,
M.
,
2021
, “
Piercing Soft Solids: A Mechanical Theory for Needle Insertion
,”
J. Mech. Phys. Solids
,
154
, p.
104497
.10.1016/j.jmps.2021.104497
195.
Simone
,
C.
, and
Okamura
,
A. M.
,
2002
, “
Modeling of Needle Insertion Forces for Robot-Assisted Percutaneous Therapy
,”
Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292)
,
Washington, DC
, May 11–15, pp.
2085
2091
.10.1109/ROBOT.2002.1014848
196.
Azar
,
T.
, and
Hayward
,
V.
,
2008
, “
Estimation of the Fracture Toughness of Soft Tissue From Needle Insertion
,”
Biomedical Simulation
,
Springer
,
Berlin Heidelberg
, pp.
166
175
.
197.
Misra
,
S.
,
Reed
,
K. B.
,
Schafer
,
B. W.
,
Ramesh
,
K. T.
, and
Okamura
,
A. M.
,
2010
, “
Mechanics of Flexible Needles Robotically Steered Through Soft Tissue
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1640
1660
.10.1177/0278364910369714
198.
Oldfield
,
M.
,
Dini
,
D.
,
Giordano
,
G.
, and
Rodriguez y Baena
,
F.
,
2013
, “
Detailed Finite Element Modelling of Deep Needle Insertions Into a Soft Tissue Phantom Using a Cohesive Approach
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
5
), pp.
530
543
.10.1080/10255842.2011.628448
199.
Montanari
,
M.
,
Brighenti
,
R.
,
Terzano
,
M.
, and
Spagnoli
,
A.
,
2023
, “
Puncturing of Soft Tissues: Experimental and Fracture Mechanics-Based Study
,”
Soft Matter
,
19
(
20
), pp.
3629
3639
.10.1039/D3SM00011G
200.
Shergold
,
O. A.
, and
Fleck
,
N. A.
,
2004
, “
Mechanisms of Deep Penetration of Soft Solids, With Application to the Injection and Wounding of Skin
,”
Proc. R. Soc. A
,
460
(
2050
), pp.
3037
3058
.10.1098/rspa.2004.1315
201.
Ogden
,
R. W.
,
1972
, “
Large Deformation Isotropic Elasticity: On the Correlation of Theory and Experiment for Compressible Rubberlike Solids
,”
Proc. R. Soc. A
,
328
(
1575
), pp.
567
583
.10.5254/1.3542910
202.
Fregonese
,
S.
, and
Bacca
,
M.
,
2022
, “
How Friction and Adhesion Affect the Mechanics of Deep Penetration in Soft Solids
,”
Soft Matter
,
18
(
36
), pp.
6882
6887
.10.1039/D2SM00638C
203.
Karnopp
,
D.
,
1985
, “
Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
107
(
1
), pp.
100
103
.10.1115/1.3140698
204.
Majd
,
V. J.
, and
Simaan
,
M. A.
,
1995
, “
A Continuous Friction Model for Servo Systems With Stiction
,”
Proceedings of International Conference on Control Applications
,
Albany, NY, Sept. 28–29, pp.
296
301
.10.1109/CCA.1995.555719
205.
Dahl
,
P. R.
,
1976
, “
Solid Friction Damping of Mechanical Vibrations
,”
AIAA J.
,
14
(
12
), pp.
1675
1682
.10.2514/3.61511
206.
Park
,
S. H.
,
Lee
,
K. J.
,
Lee
,
J.
,
Yoon
,
J. H.
,
Jo
,
D. H.
,
Kim
,
J. H.
,
Kang
,
K.
, and
Ryu
,
W.
,
2016
, “
Microneedle-Based Minimally-Invasive Measurement of Puncture Resistance and Fracture Toughness of Sclera
,”
Acta Biomater.
,
44
, pp.
286
294
.10.1016/j.actbio.2016.08.011
207.
Okamura
,
A. M.
,
Simone
,
C.
, and
O'Leary
,
M. D.
,
2004
, “
Force Modeling for Needle Insertion Into Soft Tissue
,”
IEEE Trans. Biomed. Eng.
,
51
(
10
), pp.
1707
1716
.10.1109/TBME.2004.831542
208.
Lau
,
H. K.
,
Rattan
,
S.
,
Fu
,
H.
,
Garcia
,
C. G.
,
Barber
,
D. M.
,
Kiick
,
K. L.
, and
Crosby
,
A. J.
,
2020
, “
Micromechanical Properties of Microstructured Elastomeric Hydrogels
,”
Macromol. Biosci.
,
20
(
5
), pp.
1
12
.10.1002/mabi.201900360
209.
Oldfield
,
M. J.
,
Dini
,
D.
,
Jaiswal
,
T.
, and
Rodriguez y Baena
,
F.
,
2013
, “
The Significance of Rate Dependency in Blade Insertions Into a Gelatin Soft Tissue Phantom
,”
Tribol. Int.
,
63
, pp.
226
234
.10.1016/j.triboint.2012.08.021
210.
Mahvash
,
M.
, and
Dupont
,
P. E.
,
2010
, “
Mechanics of Dynamic Needle Insertion Into a Biological Material
,”
IEEE Trans. Biomed. Eng.
,
57
(
4
), pp.
934
943
.10.1109/TBME.2009.2036856
211.
Rattan
,
S.
, and
Crosby
,
A. J.
,
2018
, “
Effect of Far-Field Compliance on Local Failure Dynamics of Soft Solids
,”
Extreme Mech. Lett.
,
24
, pp.
14
20
.10.1016/j.eml.2018.08.003
212.
Barney
,
C. W.
,
Chen
,
C.
, and
Crosby
,
A. J.
,
2021
, “
Deep Indentation and Puncture of a Rigid Cylinder Inserted Into a Soft Solid
,”
Soft Matter
,
17
(
22
), pp.
5574
5580
.10.1039/D0SM01775B
213.
DiMaio
,
S. P.
, and
Salcudean
,
S. E.
,
2003
, “
Needle Insertion Modeling and Simulation
,”
IEEE Trans. Robot. Autom.
,
19
(
5
), pp.
864
875
.10.1109/TRA.2003.817044
214.
Wei
,
Y.
,
Ju
,
J.
,
Creton
,
C.
, and
Narita
,
T.
,
2023
, “
Unexpected Fracture Behavior of Ultrasoft Associative Hydrogels Due to Strain-Induced Crystallization
,”
ACS Macro Lett.
,
12
(
8
), pp.
1106
1111
.10.1021/acsmacrolett.3c00343
215.
Boots
,
J. N. M.
,
Brake
,
D. W. T.
,
Clough
,
J. M.
,
Tauber
,
J.
,
Ruiz-Franco
,
J.
,
Kodger
,
T. E.
, and
Van Der Gucht
,
J.
,
2022
, “
Quantifying Bond Rupture During Indentation Fracture of Soft Polymer Networks Using Molecular Mechanophores
,”
Phys. Rev. Mater.
,
6
(
2
), pp.
1
11
.10.1103/PhysRevMaterials.6.025605
216.
Yu
,
X.
,
Wang
,
H.
,
Ning
,
X.
,
Sun
,
R.
,
Albadawi
,
H.
,
Salomao
,
M.
,
Silva
,
A. C.
, et al.,
2018
, “
Needle-Shaped Ultrathin Piezoelectric Microsystem for Guided Tissue Targeting Via Mechanical Sensing
,”
Nat. Biomed. Eng.
,
2
(
3
), pp.
165
172
.10.1038/s41551-018-0201-6
217.
Dong Bao
,
Y.
,
Qian
,
Qu
,
S.
,
Bo
,
Qi
,
D.
, and
Wei
,
W.
,
2022
, “
Investigation on Puncture Mechanical Performance of Tracheal Tissue
,”
J. Mech. Behav. Biomed. Mater.
,
125
, p.
104958
.10.1016/j.jmbbm.2021.104958
218.
Jiang
,
S.
,
Li
,
P.
,
Yu
,
Y.
,
Liu
,
J.
, and
Yang
,
Z.
,
2014
, “
Experimental Study of Needle-Tissue Interaction Forces: Effect of Needle Geometries, Insertion Methods and Tissue Characteristics
,”
J. Biomech.
,
47
(
13
), pp.
3344
3353
.10.1016/j.jbiomech.2014.08.007
219.
Matthews
,
A.
,
Hutnik
,
C.
,
Hill
,
K.
,
Newson
,
T.
,
Chan
,
T.
, and
Campbell
,
G.
,
2014
, “
Indentation and Needle Insertion Properties of the Human Eye
,”
Eye
,
28
(
7
), pp.
880
887
.10.1038/eye.2014.99
220.
Pinsky
,
P. M.
, and
Datye
,
D. V.
,
1991
, “
A Microstructurally-Based Finite Element Model of the Incised Human Cornea
,”
J. Biomech.
,
24
(
10
), pp.
907
922
.10.1016/0021-9290(91)90169-N
221.
Jurvelin
,
J. S.
,
Buschmann
,
M. D.
, and
Hunziker
,
E. B.
,
2003
, “
Mechanical Aniosotropy of Human Knee Articular Cartilage in Compression
,”
Trans. Orthop. Res. Soc.
,
217
(
3
), pp.
215
219
.10.1243/095441103765212712
222.
Akizuki
,
S.
,
Mow
,
V. C.
,
Müller
,
F.
,
Pita
,
J. C.
,
Howell
,
D. S.
, and
Manicourt
,
D. H.
,
1986
, “
Tensile Properties of Human Knee Joint Cartilage: I. Influence of Ionic Conditions, Weight Bearing, and Fibrillation on the Tensile Modulus
,”
J. Orthop. Res.
,
4
(
4
), pp.
379
392
.10.1002/jor.1100040401
223.
Feng
,
Y.
,
Okamoto
,
R. J.
,
Namani
,
R.
,
Genin
,
G. M.
, and
Bayly
,
P. V.
,
2013
, “
Measurements of Mechanical Anisotropy in Brain Tissue and Implications for Transversely Isotropic Material Models of White Matter
,”
J. Mech. Behav. Biomed. Mater.
,
23
, pp.
117
132
.10.1016/j.jmbbm.2013.04.007
224.
Meaney
,
D. F.
,
2003
, “
Relationship Between Structural Modeling and Hyperelastic Material Behavior: Application to CNS White Matter
,”
Biomech. Model. Mechanobiol.
,
1
(
4
), pp.
279
293
.10.1007/s10237-002-0020-1
225.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
.10.1098/rsif.2005.0073
226.
Zheng
,
Y.
,
Hu
,
Y.
, and
Cai
,
S.
,
2019
, “
Contact Mechanics of a Gel Under Constrained Swelling
,”
J. Mech. Phys. Solids
,
124
, pp.
427
445
.10.1016/j.jmps.2018.11.003
227.
Hu
,
S.
,
Chen
,
J.
,
Fabry
,
B.
,
Numaguchi
,
Y.
,
Gouldstone
,
A.
,
Ingber
,
D. E.
,
Fredberg
,
J. J.
,
Butler
,
J. P.
, and
Wang
,
N.
,
2003
, “
Intracellular Stress Tomography Reveals Stress Focusing and Structural Anisotropy in Cytoskeleton of Living Cells
,”
Am. J. Physiol. Physiol.
,
285
(
5
), pp.
C1082
C1090
.10.1152/ajpcell.00159.2003
228.
Namani
,
R.
,
Feng
,
Y.
,
Okamoto
,
R. J.
,
Jesuraj
,
N.
,
Sakiyama-Elbert
,
S. E.
,
Genin
,
G. M.
, and
Bayly
,
P. V.
,
2012
, “
Elastic Characterization of Transversely Isotropic Soft Materials by Dynamic Shear and Asymmetric Indentation
,”
ASME J. Biomech. Eng.
,
134
(
6
), p.
061004
.10.1115/1.4006848
229.
Moghaddam
,
A. O.
,
Wei
,
J.
,
Kim
,
J.
,
Dunn
,
A. C.
, and
Wagoner Johnson
,
A. J.
,
2020
, “
An Indentation-Based Approach to Determine the Elastic Constants of Soft Anisotropic Tissues
,”
J. Mech. Behav. Biomed. Mater.
,
103
, p.
103539
.10.1016/j.jmbbm.2019.103539
230.
Meloni
,
G. R.
,
Fisher
,
M. B.
,
Stoeckl
,
B. D.
,
Dodge
,
G. R.
, and
Mauck
,
R. L.
,
2017
, “
Biphasic Finite Element Modeling Reconciles Mechanical Properties of Tissue-Engineered Cartilage Constructs Across Testing Platforms
,”
Tissue Eng. - Part A
,
23
(
13–14
), pp.
663
674
.10.1089/ten.tea.2016.0191
231.
Basilio
,
A. V.
,
Zeng
,
D.
,
Pichay
,
L. A.
,
Maas
,
S. A.
,
Sundaresh
,
S. N.
,
Finan
,
J. D.
,
Elkin
,
B. S.
,
McKhann
,
G. M.
,
Ateshian
,
G. A.
, and
Morrison
,
B.
,
2024
, “
Region-Dependent Mechanical Properties of Human Brain Tissue Under Large Deformations Using Inverse Finite Element Modeling
,”
Ann. Biomed. Eng.
,
52
(
3
), pp.
600
610
.10.1007/s10439-023-03407-7
You do not currently have access to this content.