This article presents an overview on poroelastodynamic models and some analytical solutions. A brief summary of Biot’s theory and of other poroelastic dynamic governing equations is given. There is a focus on dynamic formulations, and the quasistatic case is not considered at all. Some analytical solutions for special problems, fundamental solutions, and Green’s functions are discussed. The numerical realization with two different methodologies, namely, the finite element method and the boundary element method, is reviewed.

1.
de Boer
,
R.
, 2000,
Theory of Porous Media
,
Springer-Verlag
,
Berlin
.
2.
Truesdell
,
C.
, and
Toupin
,
R.
, 1960, “
The Classical Field Theories
,”
Handbuch der Physik
, Vol.
III/1
,
S.
Flügge
, ed.,
Springer-Verlag
,
Berlin
, pp.
226
793
.
3.
Bedford
,
A.
, and
Drumheller
,
D. S.
, 1983, “
Theories of Immiscible and Structured Mixtures
,”
Int. J. Eng. Sci.
0020-7225,
21
, pp.
863
960
.
4.
Green
,
A. E.
, and
Naghdi
,
P. M.
, 1967, “
A Theory of Mixtures
,”
Arch. Ration. Mech. Anal.
0003-9527,
24
, pp.
243
263
.
5.
Green
,
A. E.
, and
Naghdi
,
P. M.
, 1968, “
A Note on Mixtures
,”
Int. J. Eng. Sci.
0020-7225,
6
, pp.
631
635
.
6.
de Boer
,
R.
, 1996, “
Highlights in the Historical Development of the Porous Media Theory: Toward a Consistent Macroscopic Theory
,”
Appl. Mech. Rev.
0003-6900,
49
(
4
), pp.
201
262
.
7.
Biot
,
M. A.
, 1941, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
0021-8979,
12
, pp.
155
164
.
8.
Bowen
,
R.
, 1976, “
Theory of Mixtures
,”
Continuum Physics
, Vol.
III
,
A.
Eringen
, ed.,
Academic
,
New York
, pp.
1
127
.
9.
Bowen
,
R. M.
, 1980, “
Incompressible Porous Media Models by Use of the Theory of Mixtures
,”
Int. J. Eng. Sci.
0020-7225,
18
, pp.
1129
1148
.
10.
Bowen
,
R. M.
, 1982, “
Compressible Porous Media Models by Use of the Theory of Mixtures
,”
Int. J. Eng. Sci.
0020-7225,
20
, pp.
697
735
.
11.
Ehlers
,
W.
, 1993, “
Compressible, Incompressible and Hybrid Two-Phase Models in Porous Media Theories
,” ASME: AMD-Vol.
158
, pp.
25
38
.
12.
Ehlers
,
W.
, 1993, “
Constitutive Equations for Granular Materials in Geomechanical Context
,”
Continuum Mechanics in Environmental Sciences and Geophysics
(
CISM Courses and Lecture Notes
No. 337),
K.
Hutter
, ed.,
Springer-Verlag
,
Wien
, pp.
313
402
.
13.
Biot
,
M. A.
, 1956, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range
,”
J. Acoust. Soc. Am.
0001-4966,
28
, pp.
168
178
.
14.
Biot
,
M. A.
, 1956, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range
,”
J. Acoust. Soc. Am.
0001-4966,
28
, pp.
179
191
.
15.
Frenkel
,
J.
, 1944, “
On the Theory of Seismic and Seismoelectric Phenomena in a Moist Soil
,”
J. Phys. (USSR)
0368-3400,
3
, pp.
230
241
.
16.
Frenkel
,
J.
, 2005, “
On the Theory of Seismic and Seismoelectric Phenomena in a Moist Soil
,”
J. Eng. Mech.
0733-9399,
131
, pp.
879
887
.
17.
Nikolaevskiy
,
V. N.
, 2005, “
Biot–Frenkel Poromechanics in Russia (Review)
,”
J. Eng. Mech.
0733-9399,
131
, pp.
888
897
.
18.
Pride
,
S. R.
, and
Garambois
,
S.
, 2005, “
Electroseismic Wave Theory of Frenkel and More Recent Developments
,”
J. Eng. Mech.
0733-9399,
131
, pp.
898
907
.
19.
Deresiewicz
,
H.
, and
Skalak
,
R.
, 1963, “
On Uniqueness in Dynamic Poroelasticity
,”
Bull. Seismol. Soc. Am.
,
53
, pp.
783
788
. 0037-1106
20.
Deresiewicz
,
H.
, 1960, “
The Effect of Boundaries on Wave Propagation in a Liquid Filled Porous Solid: I. Reflection of Plane Waves at a Free Plane Boundary (Non-Dissipative Case)
,”
Bull. Seismol. Soc. Am.
,
50
, pp.
599
607
. 0037-1106
21.
Deresiewicz
,
H.
, 1961, “
The Effect of Boundaries on Wave Propagation in a Liquid Filled Porous Solid: II. Love Waves in a Porous Layer
,”
Bull. Seismol. Soc. Am.
,
51
, pp.
51
59
. 0037-1106
22.
Deresiewicz
,
H.
, 1962, “
The Effect of Boundaries on Wave Propagation in a Liquid Filled Porous Solid. IV. Surface Waves in a Half Space
,”
Bull. Seismol. Soc. Am.
,
52
, pp.
627
638
. 0037-1106
23.
Deresiewicz
,
H.
, 1964, “
The Effect of Boundaries on Wave Propagation in a Liquid Filled Porous Solid. V. Transmission Across a Plane Interface
,”
Bull. Seismol. Soc. Am.
,
54
, pp.
409
416
. 0037-1106
24.
Deresiewicz
,
H.
, 1964, “
The Effect of Boundaries on Wave Propagation in a Liquid Filled Porous Solid. VI. Love Waves in a Double Surface Layer
,”
Bull. Seismol. Soc. Am.
,
54
, pp.
417
423
. 0037-1106
25.
Deresiewicz
,
H.
, 1964, “
The Effect of Boundaries on Wave Propagation in a Liquid Filled Porous Solid. VII. Surface Waves in a Half Space in the Presence of a Liquid Layer
,”
Bull. Seismol. Soc. Am.
,
54
, pp.
425
430
. 0037-1106
26.
Deresiewicz
,
H.
, 1965, “
The Effect of Boundaries on Wave Propagation in a Liquid Filled Porous Solid. IX. Love Waves in a Porous Internal Stratum
,”
Bull. Seismol. Soc. Am.
,
55
, pp.
919
923
. 0037-1106
27.
Deresiewicz
,
H.
, and
Levy
,
A.
, 1967, “
The Effect of Boundaries on Wave Propagation in a Liquid Filled Porous Solid. X. Transmission Through a Stratified Medium
,”
Bull. Seismol. Soc. Am.
,
57
, pp.
381
391
. 0037-1106
28.
Deresiewicz
,
H.
, and
Rice
,
J. T.
, 1962, “
The Effect of Boundaries on Wave Propagation in a Liquid Filled Porous Solid. III. Reflection of Plane Waves at a Free Plane Boundary (General Case)
,”
Bull. Seismol. Soc. Am.
,
52
, pp.
595
625
. 0037-1106
29.
Deresiewicz
,
H.
, and
Wolf
,
B.
, 1964, “
The Effect of Boundaries on Wave Propagation in a Liquid Filled Porous Solid. VIII. Reflection of Plane Waves at an Irregular Boundary
,”
Bull. Seismol. Soc. Am.
,
54
, pp.
1537
1561
. 0037-1106
30.
Aifantis
,
E. C.
, 1980, “
On the Problem of Diffusion in Solids
,”
Acta Mech.
0001-5970,
37
, pp.
265
296
.
31.
Wilson
,
R. K.
, and
Aifantis
,
E. C.
, 1982, “
On the Theory of Consolidation With Double Porosity
,”
Int. J. Eng. Sci.
0020-7225,
20
, pp.
1009
1035
.
32.
Muraleetharan
,
K. K.
, and
Wei
,
C.
, 1999, “
Dynamic Behaviour of Unsaturated Porous Media: Governing Equations Using the Theory of Mixtures With Interfaces (TMI)
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
23
, pp.
1579
1608
.
33.
Schrefler
,
B. A.
,
Simoni
,
L.
,
Xikui
,
L.
, and
Zienkiewicz
,
O. C.
, 1990, “
Mechanics of Partially Saturated Porous Media
,”
Numerical Methods and Constitutive Modelling in Geomechanics
(
CISM Courses and Lectures
),
C.
Desai
and
G.
Gioda
, eds.,
Springer-Verlag
,
Wien
, pp.
169
209
.
34.
Wei
,
C.
, and
Muraleetharan
,
K. K.
, 2002, “
A Continuum Theory of Porous Media Saturated by Multiple Immiscible Fluids: I. Linear Poroelasticity
,”
Int. J. Eng. Sci.
,
40
, pp.
1807
1833
. 0020-7225
35.
Vardoulakis
,
I.
, and
Beskos
,
D. E.
, 1986, “
Dynamic Behavior of Nearly Saturated Porous Media
,”
Mech. Mater.
0167-6636,
5
, pp.
87
108
.
36.
Beskos
,
D. E.
, 1989, “
Dynamics of Saturated Rocks. I: Equations of Motion
,”
J. Eng. Mech.
0733-9399,
115
, pp.
982
995
.
37.
Beskos
,
D. E.
,
Providakis
,
C. P.
, and
Woo
,
H. S.
, 1989, “
Dynamics of Saturated Rocks. III: Rayleigh Waves
,”
J. Eng. Mech.
0733-9399,
115
, pp.
1017
1034
.
38.
Beskos
,
D. E.
,
Vgenopoulou
,
I.
, and
Providakis
,
C. P.
, 1989, “
Dynamics of Saturated Rocks. II: Body Waves
,”
J. Eng. Mech.
0733-9399,
115
, pp.
996
1016
.
39.
Vgenopoulou
,
I.
,
Beskos
,
D. E.
, and
Vardoulakis
,
I.
, 1990, “
High Frequency Wave Propagation in Nearly Saturated Porous Media
,”
Acta Mech.
,
85
, pp.
115
123
. 0001-5970
40.
Wei
,
C.
, and
Muraleetharan
,
K. K.
, 2006, “
Acoustical Characterization of Fluid-Saturated Porous Media With Local Heterogenities: Theory and Application
,”
Int. J. Solids Struct.
,
43
, pp.
982
1008
. 0020-7683
41.
Wei
,
C.
, and
Muraleetharan
,
K. K.
, 2007, “
Linear Viscoelastic Behavior of Porous Media With Non-Uniform Saturation
,”
Int. J. Eng. Sci.
,
45
, pp.
698
715
. 0020-7225
42.
J. -F.
Thimus
,
A. H.-D.
Cheng
,
O.
Coussy
, and
E.
Detournay
, eds., 1998,
Poromechanics—A Tribute to Maurice A. Biot
,
A.A. Balkema
,
Rotterdam
.
43.
J. -L.
Auriault
,
C.
Geindreau
,
P.
Royer
,
J. F.
Bloch
,
C.
Boutin
, and
J.
Lewandowska
, eds., 2002,
Poromechanics II, Proceedings of the Second Biot Conference on Poromechanics
,
Balkema
,
Lisse, Niederlande
.
44.
Y. N.
Abousleiman
,
A. H.-D.
Cheng
, and
F. -J.
Ulm
, eds., 2005,
Poromechanics III, Biot Centennial (1905–2005) Proceedings of the Third Biot Conference on Poromechanics
,
A.A. Balkema
,
Leiden
.
45.
Cheng
,
A. H.-D.
, and
Detournay
,
E.
, 1998, “
On Singular Integral Equations and Fundamental Solutions of Poroelasticity
,”
Int. J. Solids Struct.
0020-7683,
35
, pp.
4521
4555
.
46.
Lin
,
C. -H.
,
Lee
,
V. W.
, and
Trifunac
,
M. D.
, 2005, “
The Reflection of Plane Waves in a Poroelastic Half-Space Saturated With Inviscid Fluid
,”
Soil Dyn. Earthquake Eng.
0267-7261,
25
, pp.
205
223
.
47.
Biot
,
M. A.
, 1955, “
Theory of Elasticity and Consolidation for a Porous Anisotropic Solid
,”
J. Appl. Phys.
0021-8979,
26
, pp.
182
185
.
48.
Biot
,
M. A.
, 1956, “
Theory of Deformation of a Porous Viscoelastic Anisotropic Solid
,”
J. Appl. Phys.
0021-8979,
27
, pp.
459
467
.
49.
Tolstoy
,
I.
, ed., 1991,
Acoustics, Elasticity and Thermodynamics of Porous Media: Twenty-One Papers by M. A. Biot
,
Acoustical Society of America
,
Woodbury, NY
.
50.
Plona
,
T. J.
, 1980, “
Observation of a Second Bulk Compressional Wave in Porous Medium at Ultrasonic Frequencies
,”
Appl. Phys. Lett.
0003-6951,
36
, pp.
259
261
.
51.
Detournay
,
E.
, and
Cheng
,
A. H.-D.
, 1993, “
Fundamentals of Poroelasticity
,”
Comprehensive Rock Engineering: Principles, Practice and Projects
,
Pergamon
,
New York
, pp.
113
171
.
52.
Bonnet
,
G.
, and
Auriault
,
J. -L.
, 1985, “
Dynamics of Saturated and Deformable Porous Media: Homogenization Theory and Determination of the Solid-Liquid Coupling Coefficients
,”
Physics of Finely Divided Matter
,
N.
Boccara
and
M.
Daoud
, eds.,
Springer
,
Berlin
, pp.
306
316
.
53.
Berryman
,
J. G.
, 1980, “
Confirmation of Biot’s Theory
,”
Appl. Phys. Lett.
0003-6951,
37
, pp.
382
384
.
54.
Johnson
,
D. L.
,
Koplik
,
J.
, and
Dashen
,
R.
, 1987, “
Theory of Dynamic Permeability and Tortuosity in Fluid-Saturated Porous Media
,”
J. Fluid Mech.
0022-1120,
176
, pp.
379
402
.
55.
Auriault
,
J. -L.
,
Borne
,
L.
, and
Chambon
,
R.
, 1985, “
Dynamics of Porous Saturated Media, Checking of the Generalized Law of Darcy
,”
J. Acoust. Soc. Am.
0001-4966,
77
, pp.
1641
1650
.
56.
Zienkiewicz
,
O. C.
, and
Shiomi
,
T.
, 1984, “
Dynamic Behaviour of Saturated Porous Media; The Generalized Biot Formulation and Its Numerical Solution
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
8
, pp.
71
96
.
57.
Bonnet
,
G.
, 1987, “
Basic Singular Solutions for a Poroelastic Medium in the Dynamic Range
,”
J. Acoust. Soc. Am.
0001-4966,
82
, pp.
1758
1762
.
58.
de Boer
,
R.
, 1998, “
The Thermodynamic Structure and Constitutive Equations for Fluid-Saturated Compressible and Incompressible Elastic Porous Solids
,”
Int. J. Solids Struct.
,
35
, pp.
4557
4573
. 0020-7683
59.
Schanz
,
M.
, and
Pryl
,
D.
, 2004, “
Dynamic Fundamental Solutions for Compressible and Incompressible Modeled Poroelastic Continua
,”
Int. J. Solids Struct.
,
41
, pp.
4047
4073
. 0020-7683
60.
Zienkiewicz
,
O. C.
,
Chang
,
C. T.
, and
Bettess
,
P.
, 1980, “
Drained, Undrained, Consolidating and Dynamic Behaviour Assumptions in Soils
,”
Geotechnique
,
30
, pp.
385
395
. 0016-8505
61.
Schanz
,
M.
, and
Cheng
,
A. H.-D.
, 2000, “
Transient Wave Propagation in a One-Dimensional Poroelastic Column
,”
Acta Mech.
0001-5970,
145
, pp.
1
18
.
62.
Schanz
,
M.
, and
Struckmeier
,
V.
, 2005, “
Wave Propagation in a Simplified Modeled Poroelastic Continuum: Fundamental Solutions and a Time Domain Boundary Element Formulation
,”
Int. J. Numer. Methods Eng.
0029-5981,
64
, pp.
1816
1839
.
63.
Lubich
,
C.
, 1988, “
Convolution Quadrature and Discretized Operational Calculus. I
,”
Numer. Math.
0029-599X,
52
, pp.
129
145
.
64.
Lubich
,
C.
, 1988, “
Convolution Quadrature and Discretized Operational Calculus. II
,”
Numer. Math.
0029-599X,
52
, pp.
413
425
.
65.
Kim
,
Y. K.
, and
Kingsbury
,
H. B.
, 1979, “
Dynamic Characterization of Poroelastic Materials
,”
Exp. Mech.
0014-4851,
19
, pp.
252
258
.
66.
Bowen
,
R. M.
, and
Lockett
,
R. R.
, 1983, “
Inertial Effects in Poroelasticity
,”
ASME J. Appl. Mech.
,
50
, pp.
334
342
. 0021-8936
67.
Yeh
,
F. -H.
, and
Tsay
,
H. -S.
, 1998, “
Dynamic Behavior of a Poroelastic Slab Subjected to Uniformly Distributed Impulsive Loading
,”
Comput. Struct.
0045-7949,
67
, pp.
267
277
.
68.
Fillunger
,
P.
, 1913, “
Der Auftrieb von Talsperren, Teil I-III
,” Österr. Wochenschrift öffentl. Baudienst, pp.
532
570
.
69.
Heinrich
,
G.
, and
Desoyer
,
K.
, 1955, “
Hydromechanische Grundlagen für die Behandlung von stationären und instationären Grundwasserströmungen
,”
Arch. Appl. Mech.
,
23
, pp.
73
84
. 0939-1533
70.
Heinrich
,
G.
, and
Desoyer
,
K.
, 1956, “
Hydromechanische Grundlagen für die Behandlung von stationären und instationären Grundwasserströmungen
,”
Arch. Appl. Mech.
,
24
, pp.
81
84
. 0939-1533
71.
de Boer
,
R.
, and
Ehlers
,
W.
, 1990, “
The Development of the Concept of Effective Stresses
,”
Acta Mech.
0001-5970,
83
, pp.
77
92
.
72.
Diebels
,
S.
, and
Ehlers
,
W.
, 1996, “
Dynamic Analysis of a Fully Saturated Porous Medium Accounting for Geometrical and Material Non-Linearities
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
, pp.
81
97
.
73.
de Boer
,
R.
,
Ehlers
,
W.
, and
Liu
,
Z.
, 1993, “
One-Dimensional Transient Wave Propagation in Fluid-Saturated Incompressible Porous Media
,”
Arch. Appl. Mech.
0939-1533,
63
, pp.
59
72
.
74.
Liu
,
Z.
,
Bluhm
,
J.
, and
de Boer
,
R.
, 1998, “
Inhomogeneous Plane Waves, Mechanical Energy Flux, and Energy Dissipation in a Two-Phase Porous Medium
,”
Z. Angew. Math. Mech.
,
78
, pp.
617
625
. 0044-2267
75.
Ehlers
,
W.
, and
Kubik
,
J.
, 1994, “
On Finite Dynamic Equations for Fluid-Saturated Porous Media
,”
Acta Mech.
0001-5970,
105
, pp.
101
117
.
76.
Schanz
,
M.
, and
Diebels
,
S.
, 2003, “
A Comparative Study of Biot’s Theory and the Linear Theory of Porous Media for Wave Propagation Problems
,”
Acta Mech.
,
161
, pp.
213
235
. 0001-5970
77.
Gurevich
,
B.
, 2007, “
Comparison of the Low-Frequency Predictions of Biot’s and de Boer’s Poroelasticity Theories With Gassmann’s Equation
,”
Appl. Phys. Lett.
0003-6951,
91
, p.
091919
.
78.
Coussy
,
O.
, 2004,
Poromechanics
,
Wiley
,
Chichester
.
79.
Wilmanski
,
K.
, 1998,
Thermodynamics of Continua
,
Springer-Verlag
,
Berlin
.
80.
Wilmanski
,
K.
, 1998, “
A Thermodynamic Model of Compressible Porous Materials With the Balance Equation of Porosity
,”
Transp. Porous Media
0169-3913,
32
, pp.
21
47
.
81.
Wilmanski
,
K.
, 2001, “
Thermodynamics of Multicomponent Continua
,”
Earthquake Thermodynamics and Phase Transformations in the Earth’s Interior
,
J.
Majewski
and
R.
Teisseyre
, eds.,
Academic
,
San Diego
, pp.
567
655
.
82.
Wilmanski
,
K.
, 2006, “
A Few Remarks on Biot’s Model and Linear Acoustics of Poroelastic Saturated Materials
,”
Soil Dyn. Earthquake Eng.
0267-7261,
26
, pp.
509
536
.
83.
Wilmanski
,
K.
, 2005, “
Elastic Modelling of Surface Waves in Single and Multicomponent Systems
,”
Surface Waves in Geomechanics: Direct and Inverse Modelling for Soils and Rocks
(
CISM Courses and Lectures
Vol.
481
),
C. G.
Lai
and
K.
Wilmanski
, eds.,
Springer-Verlag
,
Wien
, pp.
203
276
.
84.
Wilmanski
,
K.
, 2001, “
Some Questions on Material Objectivity Arising in Models of Porous Materials
,”
Rational Continua, Classical and New
,
P.
Podio-Guidugli
and
M.
Brocato
, eds.,
Springer-Verlag
,
Milano
, pp.
149
161
.
85.
Wilmanski
,
K.
, 2002, “
Thermodynamical Admissibility of Biot’s Model of Poroelastic Saturated Materials
,”
Arch. Mech.
0373-2029,
54
, pp.
709
736
.
86.
Wilmanski
,
K.
, 2004, “
On Microstructural Tests for Poroelastic Materials and Corresponding Gassmann-Type Relations
,”
Geotechnique
0016-8505,
54
, pp.
593
603
.
87.
Wilmanski
,
K.
, 2005, “
Tortuosity and Objective Relative Accelerations in the Theory of Porous Media
,”
Proc. R. Soc. London, Ser. A
0950-1207,
461
, pp.
1533
1561
.
88.
Albers
,
B.
, and
Wilmanski
,
K.
, 2005, “
Modeling AcousticWaves in Saturated Poroelastic Media
,”
J. Eng. Mech.
0733-9399,
131
, pp.
974
985
.
89.
Lopatnikov
,
S. L.
, and
Cheng
,
A. H.-D.
, 2002, “
Variational Formulation of Fluid Infiltrated Porous Material in Thermal and Mechanical Equilibrium
,”
Mech. Mater.
0167-6636,
34
, pp.
685
704
.
90.
Lopatnikov
,
S. L.
, and
Cheng
,
A. H.-D.
, 2004, “
Macroscopic Lagrangian Formulation of Poroelasticity With Porosity Dynamics
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
2801
2839
.
91.
Cheng
,
A. H.-D.
, and
Abousleiman
,
Y.
, 2008, “
Intrinsic Poroelasticity Constants and a Semilinear Model
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
32
, pp.
803
831
.
92.
Burridge
,
R.
, and
Keller
,
J. B.
, 1981, “
Poroelasticity Equations Derived From Microstructure
,”
J. Acoust. Soc. Am.
0001-4966,
70
, pp.
1140
1146
.
93.
Auriault
,
J. -L.
, 1980, “
Dynamic Behaviour of a Porous Medium Saturated by a Newtonian Fluid
,”
Int. J. Eng. Sci.
0020-7225,
18
, pp.
775
785
.
94.
Mei
,
C. C.
, and
Foda
,
M. A.
, 1981, “
Wind-Induced Response in a Fluid-Filled Poroelastic Solid With a Free Surface—A Boundary Layer Theory
,”
Geophys. J. R. Astron. Soc.
,
66
, pp.
597
631
. 0016-8009
95.
Pan
,
E.
, 1997, “
Static Green’s Functions in Multilayered Half Spaces
,”
Appl. Math. Model.
0307-904X,
21
, pp.
509
521
.
96.
Pan
,
E.
, 1999, “
Green’s Function in Layered Poroelastic Half-Spaces
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
23
, pp.
1631
1653
.
97.
Selvadurai
,
A.
, 2007, “
The Analytical Method in Geomechanics
,”
Appl. Mech. Rev.
0003-6900,
60
, pp.
87
106
.
98.
Burridge
,
R.
, and
Vargas
,
C. A.
, 1979, “
The Fundamental Solution in Dynamic Poroelasticity
,”
Geophys. J. R. Astron. Soc.
,
58
, pp.
61
90
. 0016-8009
99.
Norris
,
A. N.
, 1985, “
Radiation From a Point Source and Scattering Theory in a Fluid-Saturated Porous Solid
,”
J. Acoust. Soc. Am.
0001-4966,
77
, pp.
2012
2023
.
100.
Philippacopoulos
,
A. J.
, 1998, “
Spectral Green’s Dyadic for Point Sources in Poroelastic Media
,”
J. Eng. Mech.
0733-9399,
124
, pp.
24
31
.
101.
Manolis
,
G. D.
, and
Beskos
,
D. E.
, 1989, “
Integral Formulation and Fundamental Solutions of Dynamic Poroelasticity and Thermoelasticity
,”
Acta Mech.
0001-5970,
76
, pp.
89
104
.
102.
Manolis
,
G. D.
, and
Beskos
,
D. E.
, 1990, “
Corrections and Additions to the Paper ‘Integral Formulation and Fundamental Solutions of Dynamic Poroelasticity and Thermoelasticity’
,”
Acta Mech.
0001-5970,
83
, pp.
223
226
.
103.
Kupradze
,
V. D.
, 1965,
Potential Methods in the Theory of Elasticity
,
Israel Program for Scientific Translations
,
Jerusalem
.
104.
Domínguez
,
J.
, 1991, “
An Integral Formulation for Dynamic Poroelasticity
,”
ASME J. Appl. Mech.
0021-8936,
58
, pp.
588
591
.
105.
Domínguez
,
J.
, 1992, “
Boundary Element Approach for Dynamic Poroelastic Problems
,”
Int. J. Numer. Methods Eng.
0029-5981,
35
, pp.
307
324
.
106.
Kaynia
,
A. M.
, and
Banerjee
,
P. K.
, 1993, “
Fundamental Solutions of Biot’s Equations of Dynamic Poroelasticity
,”
Int. J. Eng. Sci.
,
31
, pp.
817
830
. 0020-7225
107.
Zimmerman
,
D.
, and
Stern
,
M.
, 1993, “
Boundary Element Solution of 3-D Wave Scatter Problems in a Poroelastic Medium
,”
Eng. Anal. Boundary Elem.
0955-7997,
12
, pp.
223
240
.
108.
Lu
,
J. -F.
,
Jeng
,
D. -S.
, and
Williams
,
S.
, 2008, “
A 2.5-D Dynamic Model for a Saturated Porous Medium: Part I. Green’s Function
,”
Int. J. Solids Struct.
,
45
, pp.
378
391
. 0020-7683
109.
Luco
,
J. E.
,
Wong
,
H. L.
, and
Barros
,
F. C. P. D.
, 1990, “
Three-Dimensional Response of a Cylindrical Canyon in a Layered Half-Space
,”
Earthquake Eng. Struct. Dyn.
,
19
, pp.
799
817
. 0098-8847
110.
Zhang
,
L. P.
, and
Chopra
,
A. K.
, 1991, “
3-Dimensional Analysis of Spatially Varying Ground Motions Around a Uniform Canyon in a Homogeneous Half-Space
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
20
, pp.
911
926
.
111.
Boutin
,
C.
,
Bonnet
,
G.
, and
Bard
,
P. Y.
, 1987, “
Green Functions and Associated Sources in Infinite and Stratified Poroelastic Media
,”
Geophys. J. R. Astron. Soc.
,
90
, pp.
521
550
. 0016-8009
112.
Wiebe
,
T.
, and
Antes
,
H.
, 1991, “
A Time Domain Integral Formulation of Dynamic Poroelasticity
,”
Acta Mech.
,
90
, pp.
125
137
. 0001-5970
113.
Chen
,
J.
, 1994, “
Time Domain Fundamental Solution to Biot’s Complete Equations of Dynamic Poroelasticity. Part I: Two-Dimensional Solution
,”
Int. J. Solids Struct.
,
31
, pp.
1447
1490
. 0020-7683
114.
Chen
,
J.
, 1994, “
Time Domain Fundamental Solution to Biot’s Complete Equations of Dynamic Poroelasticity. Part II: Three-Dimensional Solution
,”
Int. J. Solids Struct.
,
31
, pp.
169
202
. 0020-7683
115.
Gatmiri
,
B.
, and
Kamalian
,
M.
, 2002, “
On the Fundamental Solution of Dynamic Poroelastic Boundary Integral Equations in the Time Domain
,”
Int. J. Geomech.
1532-3641,
2
, pp.
381
398
.
116.
Gatmiri
,
B.
, and
Nguyen
,
K. -V.
, 2005, “
Time 2D Fundamental Solution for Saturated Porous Media With Incompressible Fluid
,”
Commun. Numer. Methods Eng.
1069-8299,
21
, pp.
119
132
.
117.
Kamalian
,
M.
,
Gatmiri
,
B.
, and
Sharahi
,
M. J.
, 2008, “
Time Domain 3D Fundamental Solutions for Saturated Poroelastic Media With Incompressible Constituents
,”
Commun. Numer. Methods Eng.
1069-8299,
24
, pp.
749
759
.
118.
Biot
,
M. A.
, 1962, “
Mechanics of Deformation and Acoustic Propagation in Porous Media
,”
J. Appl. Phys.
0021-8979,
33
, pp.
1482
1498
.
119.
Cheng
,
A. H.-D.
, 1997, “
Material Coefficients of Anisotropic Poroelasticity
,”
Int. J. Rock Mech. Min. Sci.
,
34
, pp.
199
205
. 0020-7624
120.
Kazi-Aoual
,
M. N.
,
Bonnet
,
G.
, and
Jouanna
,
P.
, 1988, “
Green’s Functions in an Infinite Transversely Isotropic Saturated Poroelastic Medium
,”
J. Acoust. Soc. Am.
0001-4966,
84
, pp.
1883
1889
.
121.
Norris
,
A. N.
, 1994, “
Dynamic Green’s Functions in Anisotropic Piezoelectric, Thermoelastic and Poroelastic Solids
,”
Proc. R. Soc. London, Ser. A
1364-5021,
447
, pp.
175
188
.
122.
Hanyga
,
A.
, 2003, “
Time-Domain Poroelastic Green’s Functions
,”
J. Comput. Acoust.
,
11
, pp.
491
501
. 0218-396X
123.
Paul
,
S.
, 1976, “
On the Displacements Produced in a Porous Elastic Half-Space by an Impulsive Line Load (Non-Dissipative Case)
,”
Pure Appl. Geophys.
0033-4553,
114
, pp.
605
614
.
124.
Paul
,
S.
, 1976, “
On the Disturbance Produced in a Semi-Infinite Poroelastic Medium by a Surface Load
,”
Pure Appl. Geophys.
0033-4553,
114
, pp.
615
627
.
125.
Gazetas
,
G.
, and
Petrakis
,
E.
, 1981, “
Offshore Caissons on Porous Saturated Soil
,”
Proceedings of International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
,
S.
Parkash
, ed.,
University of Missouri-Rolla
,
Rolla
, pp.
381
386
.
126.
Halpern
,
M. R.
, and
Christiano
,
P.
, 1986, “
Response of Poroelastic Halfspace to Steady-State Harmonic Surface Tractions
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
10
, pp.
609
632
.
127.
Halpern
,
M. R.
, and
Christiano
,
P.
, 1986, “
Steady-State Harmonic Response of a Ridgid Plate Bearing on a Liquid-Saturated Poroelastic Halfspace
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
14
, pp.
439
454
.
128.
Jin
,
B.
, and
Liu
,
H.
, 1999, “
Vertical Dynamic Response of a Disk on a Saturated Poroelastic Half-Space
,”
Soil Dyn. Earthquake Eng.
0267-7261,
18
, pp.
437
443
.
129.
Jin
,
B.
, and
Liu
,
H.
, 2000, “
Horizontal Vibrations of a Disk on a Poroelastic Half-Space
,”
Soil Dyn. Earthquake Eng.
0267-7261,
19
, pp.
269
275
.
130.
Jin
,
B.
, and
Liu
,
H.
, 2000, “
Rocking Vibrations of Rigid Disk on Saturated Poroelastic Medium
,”
Soil Dyn. Earthquake Eng.
0267-7261,
19
, pp.
469
472
.
131.
Zeng
,
X.
, and
Rajapakse
,
R. K. N. D.
, 1999, “
Vertical Vibrations of a Rigid Disk Embedded in a Poroelastic Medium
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
23
, pp.
2075
2095
.
132.
Philippacopoulos
,
A. J.
, 1988, “
Lamb’s Problem for Fluid-Saturated, Porous Media
,”
Bull. Seismol. Soc. Am.
,
78
, pp.
908
923
. 0037-1106
133.
Sharma
,
M. D.
, 1992, “
Comments on ‘Lamb’s Problem for Fluid-Saturated Porous Media’
,”
Bull. Seismol. Soc. Am.
,
82
, pp.
2263
2273
. 0037-1106
134.
Philippacopoulos
,
A. J.
, 1989, “
Axisymmetric Vibrations of Disk Resting on Saturated Layered Half-Space
,”
J. Eng. Mech.
0733-9399,
115
, pp.
2301
2322
.
135.
Senjuntichai
,
T.
, and
Rajapakse
,
R. K. N. D.
, 1994, “
Dynamic Green’s Functions of Homogeneous Poroelastic Half-Plane
,”
J. Eng. Mech.
0733-9399,
120
, pp.
2381
2404
.
136.
Rajapakse
,
R. K. N. D.
, and
Senjuntichai
,
T.
, 1995, “
Dynamic Response of a Multi-Layered Poroelastic Medium
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
24
, pp.
703
722
.
137.
Kausel
,
E.
, 1996, “
Discussion on ‘Dynamic Response of a Multi-Layered Poroelastic Medium’
,”
Earthquake Eng. Struct. Dyn.
,
25
, pp.
1165
1167
. 0098-8847
138.
Bougacha
,
S.
,
Tassoulas
,
J. T.
, and
Roësset
,
J. M.
, 1993, “
Analysis of Foundations on Fluid-Filled Poroelastic Stratum
,”
J. Eng. Mech.
0733-9399,
119
, pp.
1632
1648
.
139.
Bougacha
,
S.
,
Roësset
,
J. M.
, and
Tassoulas
,
J. T.
, 1993, “
Dynamic Stiffness of Foundations on Fluid-Filled Poroelastic Stratum
,”
J. Eng. Mech.
0733-9399,
119
, pp.
1649
1662
.
140.
Jin
,
B.
, and
Liu
,
H.
, 2001, “
Dynamic Response of a Poroelastic Half Space to Horizontal Buried Loading
,”
Int. J. Solids Struct.
,
38
, pp.
8053
8064
. 0020-7683
141.
Philippacopoulos
,
A. J.
, 1997, “
Buried Point Source in a Poroelastic Half-Space
,”
J. Eng. Mech.
0733-9399,
123
, pp.
860
869
.
142.
Degrande
,
G.
,
De Roeck
,
G.
, and
Van Den Broeck
,
P.
, 1998, “
Wave Propagation in Layered Dry, Saturated and Unsaturated Poroelastic Media
,”
Int. J. Solids Struct.
0020-7683,
35
, pp.
4753
4778
.
143.
Garg
,
S. K.
,
Nayfeh
,
A. H.
, and
Good
,
A. J.
, 1974, “
Compressional Waves in Fluid-Saturated Elastic Porous Media
,”
J. Appl. Phys.
0021-8979,
45
, pp.
1968
1974
.
144.
Hong
,
S. J.
,
Sandhu
,
R. S.
, and
Wolfe
,
W. E.
, 1988, “
On Grag’s Solution of Biot’s Equations for Wave Propagation in a One-Dimensional Fluid-Saturated Elastic Porous Solid
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
12
, pp.
627
637
.
145.
Hiremath
,
M. S.
,
Sandhu
,
R. S.
,
Morland
,
L. W.
, and
Wolfe
,
W. E.
, 1988, “
Analysis of One-Dimensional Wave Propagation in a Fluid-Saturated Finite Soil Column
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
12
, pp.
121
139
.
146.
Cheng
,
A. H.-D.
,
Badmus
,
T.
, and
Beskos
,
D.
, 1991, “
Integral Equations for Dynamic Poroelasticity in Frequency Domain With BEM Solution
,”
J. Eng. Mech.
0733-9399,
117
, pp.
1136
1157
.
147.
Vgenopoulou
,
I.
, and
Beskos
,
D. E.
, 1992, “
Dynamic Behavior of Saturated Poroviscoelastic Media
,”
Acta Mech.
0001-5970,
95
, pp.
185
195
.
148.
Schanz
,
M.
, and
Cheng
,
A. H.-D.
, 2001, “
Dynamic Analysis of a One-Dimensional Poroviscoelastic Column
,”
ASME J. Appl. Mech.
0021-8936,
68
, pp.
192
198
.
149.
Detournay
,
E.
, and
Cheng
,
A. H.-D.
, 1988, “
Poroelastic Response of a Borehole in a Non-Hydrostatic Stress Field
,”
Int. J. Rock Mech. Min. Sci.
,
25
, pp.
178
182
. 0020-7624
150.
Senjuntichai
,
T.
, and
Rajapakse
,
R. K. N. D.
, 1993, “
Transient Response of a Circular Cavity in a Poroelastic Medium
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
17
, pp.
357
383
.
151.
Xie
,
K. H.
,
Liu
,
G. -B.
, and
Shi
,
Z. -Y.
, 2004, “
Dynamic Response of Partially Sealed Circular Tunnel in Viscoelastic Saturated Soil
,”
Soil Dyn. Earthquake Eng.
0267-7261,
24
, pp.
1003
1011
.
152.
Lu
,
J. -F.
, and
Jeng
,
D. -S.
, 2006, “
Dynamic Analysis of an Infinite Cylindrical Hole in a Saturated Poroelastic Medium
,”
Arch. Appl. Mech.
0939-1533,
76
, pp.
263
276
.
153.
Vgenopoulou
,
I.
, and
Beskos
,
D.
, 1992, “
Dynamic Poroelastic Soil Column and Borehole Problem Analysis
,”
Soil Dyn. Earthquake Eng.
0267-7261,
11
, pp.
335
345
.
154.
Vgenopoulou
,
I.
, and
Beskos
,
D.
, 1992, “
Dynamics of Saturated Rocks. IV: Column and Borehole Problems
,”
J. Eng. Mech.
0733-9399,
118
, pp.
1795
1813
.
155.
Edelman
,
I.
, 2006, “
An Analytical Interpretation of Liquid Injection Induced Microseismicity in Porous Reservoirs
,”
Soil Dyn. Earthquake Eng.
0267-7261,
26
, pp.
566
573
.
156.
Berryman
,
J. G.
, 1985, “
Scattering by a Spherical Inhomogeneity in a Fluid-Saturated Porous Medium
,”
J. Math. Phys.
0022-2488,
26
, pp.
1408
1419
.
157.
Mei
,
C. C.
,
Si
,
B. I.
, and
Cai
,
D.
, 1984, “
Scattering of Simple Harmonic Waves by a Circular Cavity in a Fluid-Infiltrated Poroelastic Medium
,”
Wave Motion
0165-2125,
6
, pp.
265
278
.
158.
Hasheminejad
,
S.
, and
Hosseini
,
H.
, 2008, “
Nonaxisymmetric Interaction of a Spherical Radiator in a Fluid-Filled Permeable Borehole
,”
Int. J. Solids Struct.
,
45
, pp.
24
47
. 0020-7683
159.
Hasheminejad
,
S.
, and
Avazmohammadi
,
R.
, 2006, “
Acoustic Diffraction by a Pair of Poroelastic Cylinders
,”
Z. Angew. Math. Mech.
0044-2267,
86
, pp.
589
605
.
160.
Hasheminejad
,
S.
, and
Mehdizadeh
,
S.
, 2004, “
Acoustic Radiation From a Finite Spherical Source Placed in Fluid Near a Poroelastic Sphere
,”
Arch. Appl. Mech.
0939-1533,
74
, pp.
59
74
.
161.
Liang
,
J.
,
Ba
,
Z.
, and
Lee
,
V. W.
, 2006, “
Diffraction of Plane SV Waves by a Shallow Cicular-Arc Canyon in a Saturated Poroelastic Half-Space
,”
Soil Dyn. Earthquake Eng.
0267-7261,
26
, pp.
582
610
.
162.
Galvin
,
R.
, and
Gurevich
,
B.
, 2007, “
Scattering of a Longitudinal Wave by a Circular Crack in a Fluid-Saturated Porous Media
,”
Int. J. Solids Struct.
,
44
, pp.
7389
7398
. 0020-7683
163.
Jin
,
B.
, and
Zhong
,
Z.
, 2002, “
Dynamic Stress Intensity Factor (Mode I) of a Penny-Shaped Crack in Infinite Poroelastic Solid
,”
Int. J. Eng. Sci.
0020-7225,
40
, pp.
637
646
.
164.
Theodorakopoulos
,
D. D.
, 2003, “
Dynamic Analysis of a Poroelastic Half-Plane Soil Medium Under Moving Loads
,”
Soil Dyn. Earthquake Eng.
0267-7261,
23
, pp.
521
533
.
165.
Theodorakopoulos
,
D. D.
,
Chassiakos
,
A. P.
, and
Beskos
,
D. E.
, 2004, “
Dynamic Effects of Moving Load on a Poroelastic Soil Medium by an Approximate Method
,”
Int. J. Solids Struct.
,
41
, pp.
1801
1822
. 0020-7683
166.
Mei
,
C. C.
,
Si
,
B. I.
, and
Chen
,
Y. -S.
, 1985, “
Dynamic Response in a Poroealstic Ground Induced by a Moving Air Pressure
,”
Wave Motion
,
7
, pp.
129
141
. 0165-2125
167.
Cai
,
Y.
,
Sun
,
H.
, and
Xu
,
C.
, 2007, “
Steady State Response of Poroelastic Half-Space Soil Medium to a Moving Rectangular Load
,”
Int. J. Solids Struct.
,
44
, pp.
7183
7196
. 0020-7683
168.
Chen
,
S. L.
,
Chen
,
L. Z.
, and
Zhang
,
J. M.
, 2006, “
Dynamic Response of a Flexible Plate on Saturated Soil Layer
,”
Soil Dyn. Earthquake Eng.
0267-7261,
26
, pp.
637
647
.
169.
Cai
,
Y. Q.
,
Cheng
,
Y. M.
,
Au
,
S. K. A.
,
Xu
,
C. J.
, and
Ma
,
X. H.
, 2008, “
Vertical Vibration of an Elastic Strip Footing on Saturated Soil
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
32
, pp.
493
508
.
170.
Theodorakopoulos
,
D. D.
,
Chassiakos
,
A. P.
, and
Beskos
,
D. E.
, 2001, “
Dynamic Pressures on Rigid Cantilever Walls Retaining Poroelastic Soil Media. Part I: First Method of Solution
,”
Soil Dyn. Earthquake Eng.
0267-7261,
21
, pp.
315
338
.
171.
Theodorakopoulos
,
D. D.
,
Chassiakos
,
A. P.
, and
Beskos
,
D. E.
, 2001, “
Dynamic Pressures on Rigid Cantilever Walls Retaining Poroelastic Soil Media. Part II: Second Method of Solution
,”
Soil Dyn. Earthquake Eng.
0267-7261,
21
, pp.
339
364
.
172.
Lanzoni
,
L.
,
Radi
,
E.
, and
Tralli
,
A.
, 2007, “
On the Seismic Response of a Flexible Wall Retaining a Viscous Poroelastic Soil
,”
Soil Dyn. Earthquake Eng.
0267-7261,
27
, pp.
818
842
.
173.
Theodorakopoulos
,
D. D.
, 2003, “
Dynamic Pressures on a Pair of Rigid Walls Retaining Poro-Elastic Soil
,”
Soil Dyn. Earthquake Eng.
0267-7261,
23
, pp.
41
51
.
174.
Theodorakopoulos
,
D. D.
, and
Beskos
,
D. E.
, 2003, “
Dynamic Pressures on a Pair of Rigid Walls Experiencing Base Rotation and Retaining Poroelastic Soil
,”
Eng. Struct.
,
25
, pp.
359
370
. 0141-0296
175.
Cederbaum
,
G.
,
Li
,
L.
, and
Schulgasser
,
K.
, 2000,
Poroelastic Structures
,
Elsevier
,
Amsterdam
.
176.
Theodorakopoulos
,
D.
, and
Beskos
,
D.
, 1993, “
Flexural Vibrations of Fissured Poroelastic Plates
,”
Arch. Appl. Mech.
,
63
, pp.
413
423
. 0939-1533
177.
Theodorakopoulos
,
D.
, and
Beskos
,
D.
, 1994, “
Flexural Vibrations of Poroelastic Plates
,”
Acta Mech.
0001-5970,
103
, pp.
191
203
.
178.
Busse
,
A.
,
Schanz
,
M.
, and
Antes
,
H.
, 2003, “
A Poroelastic Mindlin Plate
,”
Proc. Appl. Math. Mech.
1617-7061,
3
, pp.
260
261
.
179.
Lewis
,
R. W.
, and
Schrefler
,
B. A.
, 1998,
The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media
,
Wiley
,
Chichester
.
180.
Zienkiewicz
,
O. C.
,
Chan
,
A. H. C.
,
Pastor
,
M.
,
Schrefler
,
B. A.
, and
Shiomi
,
T.
, 1999,
Computational Geomechanics With Special Reference to Earthquake Engineering
,
Wiley
,
Chichester
.
181.
Allard
,
J.
, 1993,
Propagation of Sound in Porous Media
,
Elsevier Applied Science
,
London
.
182.
Ghaboussi
,
J.
, and
Wilson
,
E. L.
, 1972, “
Variational Formulation of Dynamics of Fluid-Saturated Porous Elastic Solids
,”
J. Eng. Mech.
,
98
, pp.
947
963
. 0001-4966
183.
Zienkiewicz
,
O. C.
,
Chan
,
A. H. C.
,
Pastor
,
M.
,
Paul
,
D. K.
, and
Shiomi
,
T.
, 1990, “
Static and Dynamic Behaviour of Soils: A Rational Approach to Quantitative Solutions. I. Fully Saturated Problems
,”
Proc. R. Soc. London, Ser. A
,
429
, pp.
285
309
. 0080-4630
184.
Simon
,
B. R.
,
Wu
,
J. S. S.
,
Zienkiewicz
,
O. C.
, and
Paul
,
D. K.
, 1986, “
Evaluation of u−w and u−p FEM for the Response of Saturated Porous Media Using One-Dimensional Models
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
10
, pp.
461
482
.
185.
Simon
,
B. R.
,
Wu
,
J. S. S.
, and
Zienkiewicz
,
O. C.
, 1986, “
Evaluation of Higher Order, Mixed and Hermitean Finite Element Procedures for Dynamic Analysis of Saturated Porous Media Using One-Dimensional Models
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
10
, pp.
483
499
.
186.
Zienkiewicz
,
O. C.
,
Hinton
,
E.
,
Leung
,
K. H.
, and
Taylor
,
R. L.
, 1980, “
Staggered Time Marching Schemes in Dynamic Soil Analysis and a Selective Explicit Extrapolation
,”
Proceedings of the Second Symposium on Innovative Numerical Analysis for the Engineering Sciences
,
University of Virginia Press
,
Charlottesville
.
187.
Zienkiewicz
,
O. C.
,
Paul
,
D. K.
, and
Chan
,
A. H. C.
, 1988, “
Unconditionally Stable Staggered Solution Procedure for Soil-Pore Fluid Interaction Problems
,”
Int. J. Numer. Methods Eng.
0029-5981,
26
, pp.
1039
1055
.
188.
Zienkiewicz
,
O. C.
, and
Xie
,
Y. M.
, 1991, “
A Simple Error Estimator and Adaptive Time Stepping Procedure for Dynamic Analysis
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
20
, pp.
871
887
.
189.
Prevost
,
J. H.
, 1982, “
Nonlinear Transient Phenomena in Saturated Porous Media
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
30
, pp.
3
18
.
190.
Prevost
,
J. H.
, 1985, “
Wave Propagation in Fluid-Saturated Porous Media: An Efficient Finite Element Procedure
,”
Soil Dyn. Earthquake Eng.
0267-7261,
4
, pp.
183
202
.
191.
Chen
,
Z.
,
Steeb
,
H.
, and
Diebels
,
S.
, 2006, “
A Time-Discontinuous Galerkin Method for the Dynamical Analysis of Porous Media
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
30
, pp.
1113
1134
.
192.
Manzari
,
M. T.
, 1996, “
On Finite Deformation Dynamic Analysis of Saturated Soils
,”
Arch. Mech.
0373-2029,
48
, pp.
281
310
.
193.
Li
,
C.
,
Borja
,
R. I.
, and
Regueiro
,
R. A.
, 2004, “
Dynamics of Porous Media at Finite Strain
,”
Comput. Methods Appl. Mech. Eng.
,
193
, pp.
3837
3870
. 0045-7825
194.
Champoux
,
Y.
, and
Allard
,
J.
, 1991, “
Dynamic Tortuosity and Bulk Modulus in Air-Saturated Porous Media
,”
J. Appl. Phys.
0021-8979,
70
, pp.
1975
1979
.
195.
Craggs
,
A.
, 1978, “
A Finite Element for Rigid Porous Absorbing Materials
,”
J. Sound Vib.
0022-460X,
61
, pp.
101
111
.
196.
Coyette
,
J.
, and
Wynendaele
,
H.
, 1995, “
A Finite Element Model for Predicting the Acoustic Transmission Characteristics of Layered Structures
,”
Proceedings of Inter-Noise 95
,
R.
Bernhard
and
J.
Bolton
, eds.,
Noise Control Foundation
,
New York
, pp.
1279
1282
.
197.
Kang
,
Y.
, and
Bolton
,
J.
, 1995, “
Finite Element Modeling of Isotropic Elastic Porous Materials Coupled With Acoustical Finite Elements
,”
J. Acoust. Soc. Am.
0001-4966,
98
, pp.
635
643
.
198.
Panneton
,
R.
, and
Atalla
,
N.
, 1997, “
An Efficient Finite Element Scheme for Solving the Three-Dimensional Poroelasticity Problem in Acoustics
,”
J. Acoust. Soc. Am.
0001-4966,
101
, pp.
3287
3298
.
199.
Göransson
,
P.
, 1998, “
A 3-D, Symmetric, Finite Element Formulation of the Biot Equations With Application to Acoustic Wave Propagation Through an Elastic Porous Medium
,”
Int. J. Numer. Methods Eng.
0029-5981,
41
, pp.
167
192
.
200.
Atalla
,
N.
,
Panneton
,
R.
, and
Debergue
,
P.
, 1998, “
A Mixed Displacement-Pressure Formulation for Poroelastic Materials
,”
J. Acoust. Soc. Am.
0001-4966,
104
, pp.
1444
1452
.
201.
Bolton
,
J.
,
Shiau
,
N. -M.
, and
Kang
,
Y.
, 1996, “
Sound Transmission Through Multi-Panel Structures Lined With Elastic Porous Materials
,”
J. Sound Vib.
0022-460X,
191
, pp.
317
347
.
202.
Debergue
,
P.
,
Panneton
,
R.
, and
Atalla
,
N.
, 1999, “
Boundary Conditions for the Weak Formulation of the Mixed (u,p) Poroelasticity Problem
,”
J. Acoust. Soc. Am.
0001-4966,
106
, pp.
2383
2390
.
203.
Atalla
,
N.
,
Hamdi
,
M. A.
, and
Panneton
,
R.
, 2001, “
Enhanced Weak Integral Formulation for the Mixed (u,p) Poroelastic Equations
,”
J. Acoust. Soc. Am.
0001-4966,
109
, pp.
3065
3068
.
204.
Bécot
,
F. -X.
, and
Sgard
,
F.
, 2006, “
On the Use of Poroelastic Materials for the Control of the Sound Radiated by a Cavity Backed Plate
,”
J. Acoust. Soc. Am.
0001-4966,
120
, pp.
2055
2066
.
205.
Hörlin
,
N. -E.
,
Nordström
,
M.
, and
Göransson
,
P.
, 2001, “
A 3-D Hierarchical FE Formulation of Biot’s Equations for Elasto-Acoustic Modelling of Porous Media
,”
J. Acoust. Soc. Am.
,
245
, pp.
633
652
. 0001-4966
206.
Hörlin
,
N. -E.
, 2005, “
3D Hierarchical hp-FEM Applied to Elasto-Acoustic Modelling of Layered Porous Media
,”
J. Acoust. Soc. Am.
,
285
, pp.
341
363
. 0001-4966
207.
Rigobert
,
S.
,
Atalla
,
N.
, and
Sgard
,
F.
, 2003, “
Investigation of the Convergence of the Mixed Displacement-Pressure Formulation for Three-Dimensional Poroelastic Materials Using Hierarchical Elements
,”
J. Acoust. Soc. Am.
0001-4966,
114
, pp.
2607
2617
.
208.
Bermúdez
,
A.
,
Ferrín
,
J. L.
, and
Prieto
,
A.
, 2005, “
A Finite Element Solution of Acoustic Propagation in Rigid Porous Media
,”
Int. J. Numer. Methods Eng.
0029-5981,
62
, pp.
1295
1314
.
209.
Bermúdez
,
A.
,
Ferrín
,
J. L.
, and
Prieto
,
A.
, 2006, “
Finite Element Solution of New Displacement/Pressure Poroelastic Models in Acoustics
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
1914
1932
. 0045-7825
210.
Degrande
,
G.
, and
De Roeck
,
G.
, 1993, “
An Absorbing Boundary Condition for Wave Propagation in Saturated Poroelastic Media—Part I: Formulation and Efficiency Evaluation
,”
Soil Dyn. Earthquake Eng.
0267-7261,
12
, pp.
411
421
.
211.
Degrande
,
G.
, and
De Roeck
,
G.
, 1993, “
An Absorbing Boundary Condition for Wave Propagation in Saturated Poroelastic Media—Part II: Finite Element Formulation
,”
Soil Dyn. Earthquake Eng.
0267-7261,
12
, pp.
423
432
.
212.
Khalili
,
N.
,
Yazdchi
,
M.
, and
Valliappan
,
S.
, 1999, “
Wave Propagation Analysis of Two-Phase Saturated Porous Media Using Coupled Finite-Infinite Element Method
,”
Soil Dyn. Earthquake Eng.
0267-7261,
18
, pp.
533
553
.
213.
Shao
,
X. -M.
, and
Lan
,
Z. -L.
, 2000, “
Finite Element Methods for the Equations of Waves in Fluid-Saturated Porous Media
,”
Chin. J. Geophys.
,
43
, pp.
291
306
.
214.
Geers
,
T. L.
, 1971, “
Residual Potential and Approximate Methods for Three-Dimensional Fluid-Structure Interaction Problems
,”
J. Acoust. Soc. Am.
0001-4966,
49
, pp.
1505
1510
.
215.
Geers
,
T. L.
, 1978, “
Doubly Asymptotic Approximations for Transient Motions of Submerged Structures
,”
J. Acoust. Soc. Am.
0001-4966,
64
, pp.
1500
1508
.
216.
Qi
,
Q.
, and
Geers
,
T. L.
, 1997, “
Double Asymptotic Approximations for Transient Poroelastodynamics
,”
J. Acoust. Soc. Am.
0001-4966,
102
, pp.
1361
1371
.
217.
Beskos
,
D. E.
, 1987, “
Boundary Element Methods in Dynamic Analysis
,”
Appl. Mech. Rev.
0003-6900,
40
, pp.
1
23
.
218.
Beskos
,
D. E.
, 1997, “
Boundary Element Methods in Dynamic Analysis: Part II (1986-1996)
,”
Appl. Mech. Rev.
0003-6900,
50
(
3
), pp.
149
197
.
219.
Cheng
,
A. H.-D.
, and
Cheng
,
D.
, 2005, “
Heritage and Early History of the Boundary Element Method
,”
Eng. Anal. Boundary Elem.
,
29
, pp.
268
302
. 0955-7997
220.
Chopra
,
M.
, 2001, “
Poro-Elasticity Using BEM
,”
Coupled Field Problems
(
Advances in Boundary Elements
Vol.
11
),
A. J.
Kassab
and
M. H.
Aliabadi
, eds.,
WIT
, pp.
211
240
.
221.
Mansur
,
W. J.
, 1983, “
A Time-Stepping Technique to Solve Wave Propagation Problems Using the Boundary Element Method
,” Ph.D. thesis, University of Southampton, Southampton, UK.
222.
Cruse
,
T. A.
, and
Rizzo
,
F. J.
, 1968, “
A Direct Formulation and Numerical Solution of the General Transient Elastodynamic Problem, I
,”
J. Math. Anal. Appl.
0022-247X,
22
, pp.
244
259
.
223.
Lu
,
J. -F.
,
Jeng
,
D. -S.
, and
Williams
,
S.
, 2008, “
A 2.5-D Dynamic Model for a Saturated Porous Medium: Part II. Boundary Element Method
,”
Int. J. Solids Struct.
,
45
, pp.
359
377
. 0020-7683
224.
Chen
,
J.
, and
Dargush
,
G. F.
, 1995, “
Boundary Element Method for Dynamic Poroelastic and Thermoelastic Analysis
,”
Int. J. Solids Struct.
,
32
, pp.
2257
2278
. 0020-7683
225.
Schanz
,
M.
, 2001, “
Application of 3-d Boundary Element Formulation to Wave Propagation in Poroelastic Solids
,”
Eng. Anal. Boundary Elem.
,
25
, pp.
363
376
. 0955-7997
226.
Schanz
,
M.
, 2001, “
Dynamic Poroelasticity Treated by a Time Domain Boundary Element Method
,”
IUTAM/IACM/IABEM Symposium on Advanced Mathematical and Computational Mechanic Aspects of the Boundary Element Method
,
T.
Burczynski
, ed.,
Kluwer Academic
,
Dordrecht
, pp.
303
314
.
227.
Schanz
,
M.
, 2001,
Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element Approach
(
Lecture Notes in Applied Mechanics
Vol.
2
),
Springer-Verlag
,
Berlin
.
228.
Telles
,
J. C. F.
, 1983,
The Boundary Element Method Applied to Inelastic Problems
,
Springer-Verlag
,
Berlin
.
229.
Soares
,
D.
, Jr.
,
Telles
,
J. C. F.
, and
Mansur
,
W. J.
, 2006, “
A Time-Domain Boundary Element Formulation for the Dynamic Analysis of Non-Linear Porous Media
,”
Eng. Anal. Boundary Elem.
,
30
, pp.
363
370
. 0955-7997
230.
Maeso
,
O.
, and
Domínguez
,
J.
, 1993, “
Earthquake Analysis of Arch Dams. I: Dam-Foundation Interaction
,”
J. Eng. Mech.
0733-9399,
119
, pp.
496
512
.
231.
Domínguez
,
J.
, and
Maeso
,
O.
, 1993, “
Earthquake Analysis of Arch Dams. II: Dam-Water-Foundation Interaction
,”
J. Eng. Mech.
0733-9399,
119
, pp.
513
530
.
232.
Aznárez
,
J.
,
Maeso
,
O.
, and
Domínguez
,
J.
, 2006, “
BE Analysis of Bottom Sediments in Dynamic Fluid-Structure Interaction Problems
,”
Eng. Anal. Boundary Elem.
,
30
, pp.
124
136
. 0955-7997
233.
Dargush
,
G. F.
, and
Chopra
,
M. B.
, 1996, “
Dynamic Analysis of Axisymmetric Foundations on Poroelastic Media
,”
J. Eng. Mech.
0733-9399,
122
, pp.
623
632
.
234.
Maeso
,
O.
,
Aznárez
,
J. J.
, and
García
,
F.
, 2005, “
Dynamic Impedances of Piles and Group of Piles in Saturated Soils
,”
Comput. Struct.
,
83
, pp.
769
782
. 0045-7949
235.
Kattis
,
S. E.
,
Beskos
,
D. E.
, and
Cheng
,
A. H.-D.
, 2003, “
2D Dynamic Response of Unlined and Lined Tunnels in Poroelastic Soil to Harmonic Body Waves
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
32
, pp.
97
110
.
236.
Rajapakse
,
R. K. N. D.
, and
Senjuntichai
,
T.
, 1995, “
An Indirect Boundary Integral Equation Method for Poroelasticity
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
19
, pp.
587
614
.
237.
Senjuntichai
,
T.
,
Mani
,
S.
, and
Rajapakse
,
R. K. N. D.
, 2006, “
Vertical Vibration of an Embedded Rigid Foundation in a Poroelastic Soil
,”
Soil Dyn. Earthquake Eng.
0267-7261,
26
, pp.
626
636
.
238.
Liang
,
J.
,
You
,
H.
, and
Lee
,
V. W.
, 2006, “
Scattering of SV Waves by a Canyon in a Fluid-Saturated, Poroelastic Layered Half-Space, Modeled Using the Indirect Boundary Element Method
,”
Soil Dyn. Earthquake Eng.
0267-7261,
26
, pp.
611
625
.
You do not currently have access to this content.