This article presents an overview on poroelastodynamic models and some analytical solutions. A brief summary of Biot’s theory and of other poroelastic dynamic governing equations is given. There is a focus on dynamic formulations, and the quasistatic case is not considered at all. Some analytical solutions for special problems, fundamental solutions, and Green’s functions are discussed. The numerical realization with two different methodologies, namely, the finite element method and the boundary element method, is reviewed.
Issue Section:
Review Articles
1.
de Boer
, R.
, 2000, Theory of Porous Media
, Springer-Verlag
, Berlin
.2.
Truesdell
, C.
, and Toupin
, R.
, 1960, “The Classical Field Theories
,” Handbuch der Physik
, Vol. III/1
, S.
Flügge
, ed., Springer-Verlag
, Berlin
, pp. 226
–793
.3.
Bedford
, A.
, and Drumheller
, D. S.
, 1983, “Theories of Immiscible and Structured Mixtures
,” Int. J. Eng. Sci.
0020-7225, 21
, pp. 863
–960
.4.
Green
, A. E.
, and Naghdi
, P. M.
, 1967, “A Theory of Mixtures
,” Arch. Ration. Mech. Anal.
0003-9527, 24
, pp. 243
–263
.5.
Green
, A. E.
, and Naghdi
, P. M.
, 1968, “A Note on Mixtures
,” Int. J. Eng. Sci.
0020-7225, 6
, pp. 631
–635
.6.
de Boer
, R.
, 1996, “Highlights in the Historical Development of the Porous Media Theory: Toward a Consistent Macroscopic Theory
,” Appl. Mech. Rev.
0003-6900, 49
(4
), pp. 201
–262
.7.
Biot
, M. A.
, 1941, “General Theory of Three-Dimensional Consolidation
,” J. Appl. Phys.
0021-8979, 12
, pp. 155
–164
.8.
Bowen
, R.
, 1976, “Theory of Mixtures
,” Continuum Physics
, Vol. III
, A.
Eringen
, ed., Academic
, New York
, pp. 1
–127
.9.
Bowen
, R. M.
, 1980, “Incompressible Porous Media Models by Use of the Theory of Mixtures
,” Int. J. Eng. Sci.
0020-7225, 18
, pp. 1129
–1148
.10.
Bowen
, R. M.
, 1982, “Compressible Porous Media Models by Use of the Theory of Mixtures
,” Int. J. Eng. Sci.
0020-7225, 20
, pp. 697
–735
.11.
Ehlers
, W.
, 1993, “Compressible, Incompressible and Hybrid Two-Phase Models in Porous Media Theories
,” ASME: AMD-Vol. 158
, pp. 25
–38
.12.
Ehlers
, W.
, 1993, “Constitutive Equations for Granular Materials in Geomechanical Context
,” Continuum Mechanics in Environmental Sciences and Geophysics
(CISM Courses and Lecture Notes
No. 337), K.
Hutter
, ed., Springer-Verlag
, Wien
, pp. 313
–402
.13.
Biot
, M. A.
, 1956, “Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range
,” J. Acoust. Soc. Am.
0001-4966, 28
, pp. 168
–178
.14.
Biot
, M. A.
, 1956, “Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range
,” J. Acoust. Soc. Am.
0001-4966, 28
, pp. 179
–191
.15.
Frenkel
, J.
, 1944, “On the Theory of Seismic and Seismoelectric Phenomena in a Moist Soil
,” J. Phys. (USSR)
0368-3400, 3
, pp. 230
–241
.16.
Frenkel
, J.
, 2005, “On the Theory of Seismic and Seismoelectric Phenomena in a Moist Soil
,” J. Eng. Mech.
0733-9399, 131
, pp. 879
–887
.17.
Nikolaevskiy
, V. N.
, 2005, “Biot–Frenkel Poromechanics in Russia (Review)
,” J. Eng. Mech.
0733-9399, 131
, pp. 888
–897
.18.
Pride
, S. R.
, and Garambois
, S.
, 2005, “Electroseismic Wave Theory of Frenkel and More Recent Developments
,” J. Eng. Mech.
0733-9399, 131
, pp. 898
–907
.19.
Deresiewicz
, H.
, and Skalak
, R.
, 1963, “On Uniqueness in Dynamic Poroelasticity
,” Bull. Seismol. Soc. Am.
, 53
, pp. 783
–788
. 0037-110620.
Deresiewicz
, H.
, 1960, “The Effect of Boundaries on Wave Propagation in a Liquid Filled Porous Solid: I. Reflection of Plane Waves at a Free Plane Boundary (Non-Dissipative Case)
,” Bull. Seismol. Soc. Am.
, 50
, pp. 599
–607
. 0037-110621.
Deresiewicz
, H.
, 1961, “The Effect of Boundaries on Wave Propagation in a Liquid Filled Porous Solid: II. Love Waves in a Porous Layer
,” Bull. Seismol. Soc. Am.
, 51
, pp. 51
–59
. 0037-110622.
Deresiewicz
, H.
, 1962, “The Effect of Boundaries on Wave Propagation in a Liquid Filled Porous Solid. IV. Surface Waves in a Half Space
,” Bull. Seismol. Soc. Am.
, 52
, pp. 627
–638
. 0037-110623.
Deresiewicz
, H.
, 1964, “The Effect of Boundaries on Wave Propagation in a Liquid Filled Porous Solid. V. Transmission Across a Plane Interface
,” Bull. Seismol. Soc. Am.
, 54
, pp. 409
–416
. 0037-110624.
Deresiewicz
, H.
, 1964, “The Effect of Boundaries on Wave Propagation in a Liquid Filled Porous Solid. VI. Love Waves in a Double Surface Layer
,” Bull. Seismol. Soc. Am.
, 54
, pp. 417
–423
. 0037-110625.
Deresiewicz
, H.
, 1964, “The Effect of Boundaries on Wave Propagation in a Liquid Filled Porous Solid. VII. Surface Waves in a Half Space in the Presence of a Liquid Layer
,” Bull. Seismol. Soc. Am.
, 54
, pp. 425
–430
. 0037-110626.
Deresiewicz
, H.
, 1965, “The Effect of Boundaries on Wave Propagation in a Liquid Filled Porous Solid. IX. Love Waves in a Porous Internal Stratum
,” Bull. Seismol. Soc. Am.
, 55
, pp. 919
–923
. 0037-110627.
Deresiewicz
, H.
, and Levy
, A.
, 1967, “The Effect of Boundaries on Wave Propagation in a Liquid Filled Porous Solid. X. Transmission Through a Stratified Medium
,” Bull. Seismol. Soc. Am.
, 57
, pp. 381
–391
. 0037-110628.
Deresiewicz
, H.
, and Rice
, J. T.
, 1962, “The Effect of Boundaries on Wave Propagation in a Liquid Filled Porous Solid. III. Reflection of Plane Waves at a Free Plane Boundary (General Case)
,” Bull. Seismol. Soc. Am.
, 52
, pp. 595
–625
. 0037-110629.
Deresiewicz
, H.
, and Wolf
, B.
, 1964, “The Effect of Boundaries on Wave Propagation in a Liquid Filled Porous Solid. VIII. Reflection of Plane Waves at an Irregular Boundary
,” Bull. Seismol. Soc. Am.
, 54
, pp. 1537
–1561
. 0037-110630.
Aifantis
, E. C.
, 1980, “On the Problem of Diffusion in Solids
,” Acta Mech.
0001-5970, 37
, pp. 265
–296
.31.
Wilson
, R. K.
, and Aifantis
, E. C.
, 1982, “On the Theory of Consolidation With Double Porosity
,” Int. J. Eng. Sci.
0020-7225, 20
, pp. 1009
–1035
.32.
Muraleetharan
, K. K.
, and Wei
, C.
, 1999, “Dynamic Behaviour of Unsaturated Porous Media: Governing Equations Using the Theory of Mixtures With Interfaces (TMI)
,” Int. J. Numer. Analyt. Meth. Geomech.
0363-9061, 23
, pp. 1579
–1608
.33.
Schrefler
, B. A.
, Simoni
, L.
, Xikui
, L.
, and Zienkiewicz
, O. C.
, 1990, “Mechanics of Partially Saturated Porous Media
,” Numerical Methods and Constitutive Modelling in Geomechanics
(CISM Courses and Lectures
), C.
Desai
and G.
Gioda
, eds., Springer-Verlag
, Wien
, pp. 169
–209
.34.
Wei
, C.
, and Muraleetharan
, K. K.
, 2002, “A Continuum Theory of Porous Media Saturated by Multiple Immiscible Fluids: I. Linear Poroelasticity
,” Int. J. Eng. Sci.
, 40
, pp. 1807
–1833
. 0020-722535.
Vardoulakis
, I.
, and Beskos
, D. E.
, 1986, “Dynamic Behavior of Nearly Saturated Porous Media
,” Mech. Mater.
0167-6636, 5
, pp. 87
–108
.36.
Beskos
, D. E.
, 1989, “Dynamics of Saturated Rocks. I: Equations of Motion
,” J. Eng. Mech.
0733-9399, 115
, pp. 982
–995
.37.
Beskos
, D. E.
, Providakis
, C. P.
, and Woo
, H. S.
, 1989, “Dynamics of Saturated Rocks. III: Rayleigh Waves
,” J. Eng. Mech.
0733-9399, 115
, pp. 1017
–1034
.38.
Beskos
, D. E.
, Vgenopoulou
, I.
, and Providakis
, C. P.
, 1989, “Dynamics of Saturated Rocks. II: Body Waves
,” J. Eng. Mech.
0733-9399, 115
, pp. 996
–1016
.39.
Vgenopoulou
, I.
, Beskos
, D. E.
, and Vardoulakis
, I.
, 1990, “High Frequency Wave Propagation in Nearly Saturated Porous Media
,” Acta Mech.
, 85
, pp. 115
–123
. 0001-597040.
Wei
, C.
, and Muraleetharan
, K. K.
, 2006, “Acoustical Characterization of Fluid-Saturated Porous Media With Local Heterogenities: Theory and Application
,” Int. J. Solids Struct.
, 43
, pp. 982
–1008
. 0020-768341.
Wei
, C.
, and Muraleetharan
, K. K.
, 2007, “Linear Viscoelastic Behavior of Porous Media With Non-Uniform Saturation
,” Int. J. Eng. Sci.
, 45
, pp. 698
–715
. 0020-722542.
J. -F.
Thimus
, A. H.-D.
Cheng
, O.
Coussy
, and E.
Detournay
, eds., 1998, Poromechanics—A Tribute to Maurice A. Biot
, A.A. Balkema
, Rotterdam
.43.
J. -L.
Auriault
, C.
Geindreau
, P.
Royer
, J. F.
Bloch
, C.
Boutin
, and J.
Lewandowska
, eds., 2002, Poromechanics II, Proceedings of the Second Biot Conference on Poromechanics
, Balkema
, Lisse, Niederlande
.44.
Y. N.
Abousleiman
, A. H.-D.
Cheng
, and F. -J.
Ulm
, eds., 2005, Poromechanics III, Biot Centennial (1905–2005) Proceedings of the Third Biot Conference on Poromechanics
, A.A. Balkema
, Leiden
.45.
Cheng
, A. H.-D.
, and Detournay
, E.
, 1998, “On Singular Integral Equations and Fundamental Solutions of Poroelasticity
,” Int. J. Solids Struct.
0020-7683, 35
, pp. 4521
–4555
.46.
Lin
, C. -H.
, Lee
, V. W.
, and Trifunac
, M. D.
, 2005, “The Reflection of Plane Waves in a Poroelastic Half-Space Saturated With Inviscid Fluid
,” Soil Dyn. Earthquake Eng.
0267-7261, 25
, pp. 205
–223
.47.
Biot
, M. A.
, 1955, “Theory of Elasticity and Consolidation for a Porous Anisotropic Solid
,” J. Appl. Phys.
0021-8979, 26
, pp. 182
–185
.48.
Biot
, M. A.
, 1956, “Theory of Deformation of a Porous Viscoelastic Anisotropic Solid
,” J. Appl. Phys.
0021-8979, 27
, pp. 459
–467
.49.
Tolstoy
, I.
, ed., 1991, Acoustics, Elasticity and Thermodynamics of Porous Media: Twenty-One Papers by M. A. Biot
, Acoustical Society of America
, Woodbury, NY
.50.
Plona
, T. J.
, 1980, “Observation of a Second Bulk Compressional Wave in Porous Medium at Ultrasonic Frequencies
,” Appl. Phys. Lett.
0003-6951, 36
, pp. 259
–261
.51.
Detournay
, E.
, and Cheng
, A. H.-D.
, 1993, “Fundamentals of Poroelasticity
,” Comprehensive Rock Engineering: Principles, Practice and Projects
, Pergamon
, New York
, pp. 113
–171
.52.
Bonnet
, G.
, and Auriault
, J. -L.
, 1985, “Dynamics of Saturated and Deformable Porous Media: Homogenization Theory and Determination of the Solid-Liquid Coupling Coefficients
,” Physics of Finely Divided Matter
, N.
Boccara
and M.
Daoud
, eds., Springer
, Berlin
, pp. 306
–316
.53.
Berryman
, J. G.
, 1980, “Confirmation of Biot’s Theory
,” Appl. Phys. Lett.
0003-6951, 37
, pp. 382
–384
.54.
Johnson
, D. L.
, Koplik
, J.
, and Dashen
, R.
, 1987, “Theory of Dynamic Permeability and Tortuosity in Fluid-Saturated Porous Media
,” J. Fluid Mech.
0022-1120, 176
, pp. 379
–402
.55.
Auriault
, J. -L.
, Borne
, L.
, and Chambon
, R.
, 1985, “Dynamics of Porous Saturated Media, Checking of the Generalized Law of Darcy
,” J. Acoust. Soc. Am.
0001-4966, 77
, pp. 1641
–1650
.56.
Zienkiewicz
, O. C.
, and Shiomi
, T.
, 1984, “Dynamic Behaviour of Saturated Porous Media; The Generalized Biot Formulation and Its Numerical Solution
,” Int. J. Numer. Analyt. Meth. Geomech.
0363-9061, 8
, pp. 71
–96
.57.
Bonnet
, G.
, 1987, “Basic Singular Solutions for a Poroelastic Medium in the Dynamic Range
,” J. Acoust. Soc. Am.
0001-4966, 82
, pp. 1758
–1762
.58.
de Boer
, R.
, 1998, “The Thermodynamic Structure and Constitutive Equations for Fluid-Saturated Compressible and Incompressible Elastic Porous Solids
,” Int. J. Solids Struct.
, 35
, pp. 4557
–4573
. 0020-768359.
Schanz
, M.
, and Pryl
, D.
, 2004, “Dynamic Fundamental Solutions for Compressible and Incompressible Modeled Poroelastic Continua
,” Int. J. Solids Struct.
, 41
, pp. 4047
–4073
. 0020-768360.
Zienkiewicz
, O. C.
, Chang
, C. T.
, and Bettess
, P.
, 1980, “Drained, Undrained, Consolidating and Dynamic Behaviour Assumptions in Soils
,” Geotechnique
, 30
, pp. 385
–395
. 0016-850561.
Schanz
, M.
, and Cheng
, A. H.-D.
, 2000, “Transient Wave Propagation in a One-Dimensional Poroelastic Column
,” Acta Mech.
0001-5970, 145
, pp. 1
–18
.62.
Schanz
, M.
, and Struckmeier
, V.
, 2005, “Wave Propagation in a Simplified Modeled Poroelastic Continuum: Fundamental Solutions and a Time Domain Boundary Element Formulation
,” Int. J. Numer. Methods Eng.
0029-5981, 64
, pp. 1816
–1839
.63.
Lubich
, C.
, 1988, “Convolution Quadrature and Discretized Operational Calculus. I
,” Numer. Math.
0029-599X, 52
, pp. 129
–145
.64.
Lubich
, C.
, 1988, “Convolution Quadrature and Discretized Operational Calculus. II
,” Numer. Math.
0029-599X, 52
, pp. 413
–425
.65.
Kim
, Y. K.
, and Kingsbury
, H. B.
, 1979, “Dynamic Characterization of Poroelastic Materials
,” Exp. Mech.
0014-4851, 19
, pp. 252
–258
.66.
Bowen
, R. M.
, and Lockett
, R. R.
, 1983, “Inertial Effects in Poroelasticity
,” ASME J. Appl. Mech.
, 50
, pp. 334
–342
. 0021-893667.
Yeh
, F. -H.
, and Tsay
, H. -S.
, 1998, “Dynamic Behavior of a Poroelastic Slab Subjected to Uniformly Distributed Impulsive Loading
,” Comput. Struct.
0045-7949, 67
, pp. 267
–277
.68.
Fillunger
, P.
, 1913, “Der Auftrieb von Talsperren, Teil I-III
,” Österr. Wochenschrift öffentl. Baudienst, pp. 532
–570
.69.
Heinrich
, G.
, and Desoyer
, K.
, 1955, “Hydromechanische Grundlagen für die Behandlung von stationären und instationären Grundwasserströmungen
,” Arch. Appl. Mech.
, 23
, pp. 73
–84
. 0939-153370.
Heinrich
, G.
, and Desoyer
, K.
, 1956, “Hydromechanische Grundlagen für die Behandlung von stationären und instationären Grundwasserströmungen
,” Arch. Appl. Mech.
, 24
, pp. 81
–84
. 0939-153371.
de Boer
, R.
, and Ehlers
, W.
, 1990, “The Development of the Concept of Effective Stresses
,” Acta Mech.
0001-5970, 83
, pp. 77
–92
.72.
Diebels
, S.
, and Ehlers
, W.
, 1996, “Dynamic Analysis of a Fully Saturated Porous Medium Accounting for Geometrical and Material Non-Linearities
,” Int. J. Numer. Methods Eng.
0029-5981, 39
, pp. 81
–97
.73.
de Boer
, R.
, Ehlers
, W.
, and Liu
, Z.
, 1993, “One-Dimensional Transient Wave Propagation in Fluid-Saturated Incompressible Porous Media
,” Arch. Appl. Mech.
0939-1533, 63
, pp. 59
–72
.74.
Liu
, Z.
, Bluhm
, J.
, and de Boer
, R.
, 1998, “Inhomogeneous Plane Waves, Mechanical Energy Flux, and Energy Dissipation in a Two-Phase Porous Medium
,” Z. Angew. Math. Mech.
, 78
, pp. 617
–625
. 0044-226775.
Ehlers
, W.
, and Kubik
, J.
, 1994, “On Finite Dynamic Equations for Fluid-Saturated Porous Media
,” Acta Mech.
0001-5970, 105
, pp. 101
–117
.76.
Schanz
, M.
, and Diebels
, S.
, 2003, “A Comparative Study of Biot’s Theory and the Linear Theory of Porous Media for Wave Propagation Problems
,” Acta Mech.
, 161
, pp. 213
–235
. 0001-597077.
Gurevich
, B.
, 2007, “Comparison of the Low-Frequency Predictions of Biot’s and de Boer’s Poroelasticity Theories With Gassmann’s Equation
,” Appl. Phys. Lett.
0003-6951, 91
, p. 091919
.78.
Coussy
, O.
, 2004, Poromechanics
, Wiley
, Chichester
.79.
Wilmanski
, K.
, 1998, Thermodynamics of Continua
, Springer-Verlag
, Berlin
.80.
Wilmanski
, K.
, 1998, “A Thermodynamic Model of Compressible Porous Materials With the Balance Equation of Porosity
,” Transp. Porous Media
0169-3913, 32
, pp. 21
–47
.81.
Wilmanski
, K.
, 2001, “Thermodynamics of Multicomponent Continua
,” Earthquake Thermodynamics and Phase Transformations in the Earth’s Interior
, J.
Majewski
and R.
Teisseyre
, eds., Academic
, San Diego
, pp. 567
–655
.82.
Wilmanski
, K.
, 2006, “A Few Remarks on Biot’s Model and Linear Acoustics of Poroelastic Saturated Materials
,” Soil Dyn. Earthquake Eng.
0267-7261, 26
, pp. 509
–536
.83.
Wilmanski
, K.
, 2005, “Elastic Modelling of Surface Waves in Single and Multicomponent Systems
,” Surface Waves in Geomechanics: Direct and Inverse Modelling for Soils and Rocks
(CISM Courses and Lectures
Vol. 481
), C. G.
Lai
and K.
Wilmanski
, eds., Springer-Verlag
, Wien
, pp. 203
–276
.84.
Wilmanski
, K.
, 2001, “Some Questions on Material Objectivity Arising in Models of Porous Materials
,” Rational Continua, Classical and New
, P.
Podio-Guidugli
and M.
Brocato
, eds., Springer-Verlag
, Milano
, pp. 149
–161
.85.
Wilmanski
, K.
, 2002, “Thermodynamical Admissibility of Biot’s Model of Poroelastic Saturated Materials
,” Arch. Mech.
0373-2029, 54
, pp. 709
–736
.86.
Wilmanski
, K.
, 2004, “On Microstructural Tests for Poroelastic Materials and Corresponding Gassmann-Type Relations
,” Geotechnique
0016-8505, 54
, pp. 593
–603
.87.
Wilmanski
, K.
, 2005, “Tortuosity and Objective Relative Accelerations in the Theory of Porous Media
,” Proc. R. Soc. London, Ser. A
0950-1207, 461
, pp. 1533
–1561
.88.
Albers
, B.
, and Wilmanski
, K.
, 2005, “Modeling AcousticWaves in Saturated Poroelastic Media
,” J. Eng. Mech.
0733-9399, 131
, pp. 974
–985
.89.
Lopatnikov
, S. L.
, and Cheng
, A. H.-D.
, 2002, “Variational Formulation of Fluid Infiltrated Porous Material in Thermal and Mechanical Equilibrium
,” Mech. Mater.
0167-6636, 34
, pp. 685
–704
.90.
Lopatnikov
, S. L.
, and Cheng
, A. H.-D.
, 2004, “Macroscopic Lagrangian Formulation of Poroelasticity With Porosity Dynamics
,” J. Mech. Phys. Solids
0022-5096, 52
, pp. 2801
–2839
.91.
Cheng
, A. H.-D.
, and Abousleiman
, Y.
, 2008, “Intrinsic Poroelasticity Constants and a Semilinear Model
,” Int. J. Numer. Analyt. Meth. Geomech.
0363-9061, 32
, pp. 803
–831
.92.
Burridge
, R.
, and Keller
, J. B.
, 1981, “Poroelasticity Equations Derived From Microstructure
,” J. Acoust. Soc. Am.
0001-4966, 70
, pp. 1140
–1146
.93.
Auriault
, J. -L.
, 1980, “Dynamic Behaviour of a Porous Medium Saturated by a Newtonian Fluid
,” Int. J. Eng. Sci.
0020-7225, 18
, pp. 775
–785
.94.
Mei
, C. C.
, and Foda
, M. A.
, 1981, “Wind-Induced Response in a Fluid-Filled Poroelastic Solid With a Free Surface—A Boundary Layer Theory
,” Geophys. J. R. Astron. Soc.
, 66
, pp. 597
–631
. 0016-800995.
Pan
, E.
, 1997, “Static Green’s Functions in Multilayered Half Spaces
,” Appl. Math. Model.
0307-904X, 21
, pp. 509
–521
.96.
Pan
, E.
, 1999, “Green’s Function in Layered Poroelastic Half-Spaces
,” Int. J. Numer. Analyt. Meth. Geomech.
0363-9061, 23
, pp. 1631
–1653
.97.
Selvadurai
, A.
, 2007, “The Analytical Method in Geomechanics
,” Appl. Mech. Rev.
0003-6900, 60
, pp. 87
–106
.98.
Burridge
, R.
, and Vargas
, C. A.
, 1979, “The Fundamental Solution in Dynamic Poroelasticity
,” Geophys. J. R. Astron. Soc.
, 58
, pp. 61
–90
. 0016-800999.
Norris
, A. N.
, 1985, “Radiation From a Point Source and Scattering Theory in a Fluid-Saturated Porous Solid
,” J. Acoust. Soc. Am.
0001-4966, 77
, pp. 2012
–2023
.100.
Philippacopoulos
, A. J.
, 1998, “Spectral Green’s Dyadic for Point Sources in Poroelastic Media
,” J. Eng. Mech.
0733-9399, 124
, pp. 24
–31
.101.
Manolis
, G. D.
, and Beskos
, D. E.
, 1989, “Integral Formulation and Fundamental Solutions of Dynamic Poroelasticity and Thermoelasticity
,” Acta Mech.
0001-5970, 76
, pp. 89
–104
.102.
Manolis
, G. D.
, and Beskos
, D. E.
, 1990, “Corrections and Additions to the Paper ‘Integral Formulation and Fundamental Solutions of Dynamic Poroelasticity and Thermoelasticity’
,” Acta Mech.
0001-5970, 83
, pp. 223
–226
.103.
Kupradze
, V. D.
, 1965, Potential Methods in the Theory of Elasticity
, Israel Program for Scientific Translations
, Jerusalem
.104.
Domínguez
, J.
, 1991, “An Integral Formulation for Dynamic Poroelasticity
,” ASME J. Appl. Mech.
0021-8936, 58
, pp. 588
–591
.105.
Domínguez
, J.
, 1992, “Boundary Element Approach for Dynamic Poroelastic Problems
,” Int. J. Numer. Methods Eng.
0029-5981, 35
, pp. 307
–324
.106.
Kaynia
, A. M.
, and Banerjee
, P. K.
, 1993, “Fundamental Solutions of Biot’s Equations of Dynamic Poroelasticity
,” Int. J. Eng. Sci.
, 31
, pp. 817
–830
. 0020-7225107.
Zimmerman
, D.
, and Stern
, M.
, 1993, “Boundary Element Solution of 3-D Wave Scatter Problems in a Poroelastic Medium
,” Eng. Anal. Boundary Elem.
0955-7997, 12
, pp. 223
–240
.108.
Lu
, J. -F.
, Jeng
, D. -S.
, and Williams
, S.
, 2008, “A 2.5-D Dynamic Model for a Saturated Porous Medium: Part I. Green’s Function
,” Int. J. Solids Struct.
, 45
, pp. 378
–391
. 0020-7683109.
Luco
, J. E.
, Wong
, H. L.
, and Barros
, F. C. P. D.
, 1990, “Three-Dimensional Response of a Cylindrical Canyon in a Layered Half-Space
,” Earthquake Eng. Struct. Dyn.
, 19
, pp. 799
–817
. 0098-8847110.
Zhang
, L. P.
, and Chopra
, A. K.
, 1991, “3-Dimensional Analysis of Spatially Varying Ground Motions Around a Uniform Canyon in a Homogeneous Half-Space
,” Earthquake Eng. Struct. Dyn.
0098-8847, 20
, pp. 911
–926
.111.
Boutin
, C.
, Bonnet
, G.
, and Bard
, P. Y.
, 1987, “Green Functions and Associated Sources in Infinite and Stratified Poroelastic Media
,” Geophys. J. R. Astron. Soc.
, 90
, pp. 521
–550
. 0016-8009112.
Wiebe
, T.
, and Antes
, H.
, 1991, “A Time Domain Integral Formulation of Dynamic Poroelasticity
,” Acta Mech.
, 90
, pp. 125
–137
. 0001-5970113.
Chen
, J.
, 1994, “Time Domain Fundamental Solution to Biot’s Complete Equations of Dynamic Poroelasticity. Part I: Two-Dimensional Solution
,” Int. J. Solids Struct.
, 31
, pp. 1447
–1490
. 0020-7683114.
Chen
, J.
, 1994, “Time Domain Fundamental Solution to Biot’s Complete Equations of Dynamic Poroelasticity. Part II: Three-Dimensional Solution
,” Int. J. Solids Struct.
, 31
, pp. 169
–202
. 0020-7683115.
Gatmiri
, B.
, and Kamalian
, M.
, 2002, “On the Fundamental Solution of Dynamic Poroelastic Boundary Integral Equations in the Time Domain
,” Int. J. Geomech.
1532-3641, 2
, pp. 381
–398
.116.
Gatmiri
, B.
, and Nguyen
, K. -V.
, 2005, “Time 2D Fundamental Solution for Saturated Porous Media With Incompressible Fluid
,” Commun. Numer. Methods Eng.
1069-8299, 21
, pp. 119
–132
.117.
Kamalian
, M.
, Gatmiri
, B.
, and Sharahi
, M. J.
, 2008, “Time Domain 3D Fundamental Solutions for Saturated Poroelastic Media With Incompressible Constituents
,” Commun. Numer. Methods Eng.
1069-8299, 24
, pp. 749
–759
.118.
Biot
, M. A.
, 1962, “Mechanics of Deformation and Acoustic Propagation in Porous Media
,” J. Appl. Phys.
0021-8979, 33
, pp. 1482
–1498
.119.
Cheng
, A. H.-D.
, 1997, “Material Coefficients of Anisotropic Poroelasticity
,” Int. J. Rock Mech. Min. Sci.
, 34
, pp. 199
–205
. 0020-7624120.
Kazi-Aoual
, M. N.
, Bonnet
, G.
, and Jouanna
, P.
, 1988, “Green’s Functions in an Infinite Transversely Isotropic Saturated Poroelastic Medium
,” J. Acoust. Soc. Am.
0001-4966, 84
, pp. 1883
–1889
.121.
Norris
, A. N.
, 1994, “Dynamic Green’s Functions in Anisotropic Piezoelectric, Thermoelastic and Poroelastic Solids
,” Proc. R. Soc. London, Ser. A
1364-5021, 447
, pp. 175
–188
.122.
Hanyga
, A.
, 2003, “Time-Domain Poroelastic Green’s Functions
,” J. Comput. Acoust.
, 11
, pp. 491
–501
. 0218-396X123.
Paul
, S.
, 1976, “On the Displacements Produced in a Porous Elastic Half-Space by an Impulsive Line Load (Non-Dissipative Case)
,” Pure Appl. Geophys.
0033-4553, 114
, pp. 605
–614
.124.
Paul
, S.
, 1976, “On the Disturbance Produced in a Semi-Infinite Poroelastic Medium by a Surface Load
,” Pure Appl. Geophys.
0033-4553, 114
, pp. 615
–627
.125.
Gazetas
, G.
, and Petrakis
, E.
, 1981, “Offshore Caissons on Porous Saturated Soil
,” Proceedings of International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
, S.
Parkash
, ed., University of Missouri-Rolla
, Rolla
, pp. 381
–386
.126.
Halpern
, M. R.
, and Christiano
, P.
, 1986, “Response of Poroelastic Halfspace to Steady-State Harmonic Surface Tractions
,” Int. J. Numer. Analyt. Meth. Geomech.
0363-9061, 10
, pp. 609
–632
.127.
Halpern
, M. R.
, and Christiano
, P.
, 1986, “Steady-State Harmonic Response of a Ridgid Plate Bearing on a Liquid-Saturated Poroelastic Halfspace
,” Earthquake Eng. Struct. Dyn.
0098-8847, 14
, pp. 439
–454
.128.
Jin
, B.
, and Liu
, H.
, 1999, “Vertical Dynamic Response of a Disk on a Saturated Poroelastic Half-Space
,” Soil Dyn. Earthquake Eng.
0267-7261, 18
, pp. 437
–443
.129.
Jin
, B.
, and Liu
, H.
, 2000, “Horizontal Vibrations of a Disk on a Poroelastic Half-Space
,” Soil Dyn. Earthquake Eng.
0267-7261, 19
, pp. 269
–275
.130.
Jin
, B.
, and Liu
, H.
, 2000, “Rocking Vibrations of Rigid Disk on Saturated Poroelastic Medium
,” Soil Dyn. Earthquake Eng.
0267-7261, 19
, pp. 469
–472
.131.
Zeng
, X.
, and Rajapakse
, R. K. N. D.
, 1999, “Vertical Vibrations of a Rigid Disk Embedded in a Poroelastic Medium
,” Int. J. Numer. Analyt. Meth. Geomech.
0363-9061, 23
, pp. 2075
–2095
.132.
Philippacopoulos
, A. J.
, 1988, “Lamb’s Problem for Fluid-Saturated, Porous Media
,” Bull. Seismol. Soc. Am.
, 78
, pp. 908
–923
. 0037-1106133.
Sharma
, M. D.
, 1992, “Comments on ‘Lamb’s Problem for Fluid-Saturated Porous Media’
,” Bull. Seismol. Soc. Am.
, 82
, pp. 2263
–2273
. 0037-1106134.
Philippacopoulos
, A. J.
, 1989, “Axisymmetric Vibrations of Disk Resting on Saturated Layered Half-Space
,” J. Eng. Mech.
0733-9399, 115
, pp. 2301
–2322
.135.
Senjuntichai
, T.
, and Rajapakse
, R. K. N. D.
, 1994, “Dynamic Green’s Functions of Homogeneous Poroelastic Half-Plane
,” J. Eng. Mech.
0733-9399, 120
, pp. 2381
–2404
.136.
Rajapakse
, R. K. N. D.
, and Senjuntichai
, T.
, 1995, “Dynamic Response of a Multi-Layered Poroelastic Medium
,” Earthquake Eng. Struct. Dyn.
0098-8847, 24
, pp. 703
–722
.137.
Kausel
, E.
, 1996, “Discussion on ‘Dynamic Response of a Multi-Layered Poroelastic Medium’
,” Earthquake Eng. Struct. Dyn.
, 25
, pp. 1165
–1167
. 0098-8847138.
Bougacha
, S.
, Tassoulas
, J. T.
, and Roësset
, J. M.
, 1993, “Analysis of Foundations on Fluid-Filled Poroelastic Stratum
,” J. Eng. Mech.
0733-9399, 119
, pp. 1632
–1648
.139.
Bougacha
, S.
, Roësset
, J. M.
, and Tassoulas
, J. T.
, 1993, “Dynamic Stiffness of Foundations on Fluid-Filled Poroelastic Stratum
,” J. Eng. Mech.
0733-9399, 119
, pp. 1649
–1662
.140.
Jin
, B.
, and Liu
, H.
, 2001, “Dynamic Response of a Poroelastic Half Space to Horizontal Buried Loading
,” Int. J. Solids Struct.
, 38
, pp. 8053
–8064
. 0020-7683141.
Philippacopoulos
, A. J.
, 1997, “Buried Point Source in a Poroelastic Half-Space
,” J. Eng. Mech.
0733-9399, 123
, pp. 860
–869
.142.
Degrande
, G.
, De Roeck
, G.
, and Van Den Broeck
, P.
, 1998, “Wave Propagation in Layered Dry, Saturated and Unsaturated Poroelastic Media
,” Int. J. Solids Struct.
0020-7683, 35
, pp. 4753
–4778
.143.
Garg
, S. K.
, Nayfeh
, A. H.
, and Good
, A. J.
, 1974, “Compressional Waves in Fluid-Saturated Elastic Porous Media
,” J. Appl. Phys.
0021-8979, 45
, pp. 1968
–1974
.144.
Hong
, S. J.
, Sandhu
, R. S.
, and Wolfe
, W. E.
, 1988, “On Grag’s Solution of Biot’s Equations for Wave Propagation in a One-Dimensional Fluid-Saturated Elastic Porous Solid
,” Int. J. Numer. Analyt. Meth. Geomech.
0363-9061, 12
, pp. 627
–637
.145.
Hiremath
, M. S.
, Sandhu
, R. S.
, Morland
, L. W.
, and Wolfe
, W. E.
, 1988, “Analysis of One-Dimensional Wave Propagation in a Fluid-Saturated Finite Soil Column
,” Int. J. Numer. Analyt. Meth. Geomech.
0363-9061, 12
, pp. 121
–139
.146.
Cheng
, A. H.-D.
, Badmus
, T.
, and Beskos
, D.
, 1991, “Integral Equations for Dynamic Poroelasticity in Frequency Domain With BEM Solution
,” J. Eng. Mech.
0733-9399, 117
, pp. 1136
–1157
.147.
Vgenopoulou
, I.
, and Beskos
, D. E.
, 1992, “Dynamic Behavior of Saturated Poroviscoelastic Media
,” Acta Mech.
0001-5970, 95
, pp. 185
–195
.148.
Schanz
, M.
, and Cheng
, A. H.-D.
, 2001, “Dynamic Analysis of a One-Dimensional Poroviscoelastic Column
,” ASME J. Appl. Mech.
0021-8936, 68
, pp. 192
–198
.149.
Detournay
, E.
, and Cheng
, A. H.-D.
, 1988, “Poroelastic Response of a Borehole in a Non-Hydrostatic Stress Field
,” Int. J. Rock Mech. Min. Sci.
, 25
, pp. 178
–182
. 0020-7624150.
Senjuntichai
, T.
, and Rajapakse
, R. K. N. D.
, 1993, “Transient Response of a Circular Cavity in a Poroelastic Medium
,” Int. J. Numer. Analyt. Meth. Geomech.
0363-9061, 17
, pp. 357
–383
.151.
Xie
, K. H.
, Liu
, G. -B.
, and Shi
, Z. -Y.
, 2004, “Dynamic Response of Partially Sealed Circular Tunnel in Viscoelastic Saturated Soil
,” Soil Dyn. Earthquake Eng.
0267-7261, 24
, pp. 1003
–1011
.152.
Lu
, J. -F.
, and Jeng
, D. -S.
, 2006, “Dynamic Analysis of an Infinite Cylindrical Hole in a Saturated Poroelastic Medium
,” Arch. Appl. Mech.
0939-1533, 76
, pp. 263
–276
.153.
Vgenopoulou
, I.
, and Beskos
, D.
, 1992, “Dynamic Poroelastic Soil Column and Borehole Problem Analysis
,” Soil Dyn. Earthquake Eng.
0267-7261, 11
, pp. 335
–345
.154.
Vgenopoulou
, I.
, and Beskos
, D.
, 1992, “Dynamics of Saturated Rocks. IV: Column and Borehole Problems
,” J. Eng. Mech.
0733-9399, 118
, pp. 1795
–1813
.155.
Edelman
, I.
, 2006, “An Analytical Interpretation of Liquid Injection Induced Microseismicity in Porous Reservoirs
,” Soil Dyn. Earthquake Eng.
0267-7261, 26
, pp. 566
–573
.156.
Berryman
, J. G.
, 1985, “Scattering by a Spherical Inhomogeneity in a Fluid-Saturated Porous Medium
,” J. Math. Phys.
0022-2488, 26
, pp. 1408
–1419
.157.
Mei
, C. C.
, Si
, B. I.
, and Cai
, D.
, 1984, “Scattering of Simple Harmonic Waves by a Circular Cavity in a Fluid-Infiltrated Poroelastic Medium
,” Wave Motion
0165-2125, 6
, pp. 265
–278
.158.
Hasheminejad
, S.
, and Hosseini
, H.
, 2008, “Nonaxisymmetric Interaction of a Spherical Radiator in a Fluid-Filled Permeable Borehole
,” Int. J. Solids Struct.
, 45
, pp. 24
–47
. 0020-7683159.
Hasheminejad
, S.
, and Avazmohammadi
, R.
, 2006, “Acoustic Diffraction by a Pair of Poroelastic Cylinders
,” Z. Angew. Math. Mech.
0044-2267, 86
, pp. 589
–605
.160.
Hasheminejad
, S.
, and Mehdizadeh
, S.
, 2004, “Acoustic Radiation From a Finite Spherical Source Placed in Fluid Near a Poroelastic Sphere
,” Arch. Appl. Mech.
0939-1533, 74
, pp. 59
–74
.161.
Liang
, J.
, Ba
, Z.
, and Lee
, V. W.
, 2006, “Diffraction of Plane SV Waves by a Shallow Cicular-Arc Canyon in a Saturated Poroelastic Half-Space
,” Soil Dyn. Earthquake Eng.
0267-7261, 26
, pp. 582
–610
.162.
Galvin
, R.
, and Gurevich
, B.
, 2007, “Scattering of a Longitudinal Wave by a Circular Crack in a Fluid-Saturated Porous Media
,” Int. J. Solids Struct.
, 44
, pp. 7389
–7398
. 0020-7683163.
Jin
, B.
, and Zhong
, Z.
, 2002, “Dynamic Stress Intensity Factor (Mode I) of a Penny-Shaped Crack in Infinite Poroelastic Solid
,” Int. J. Eng. Sci.
0020-7225, 40
, pp. 637
–646
.164.
Theodorakopoulos
, D. D.
, 2003, “Dynamic Analysis of a Poroelastic Half-Plane Soil Medium Under Moving Loads
,” Soil Dyn. Earthquake Eng.
0267-7261, 23
, pp. 521
–533
.165.
Theodorakopoulos
, D. D.
, Chassiakos
, A. P.
, and Beskos
, D. E.
, 2004, “Dynamic Effects of Moving Load on a Poroelastic Soil Medium by an Approximate Method
,” Int. J. Solids Struct.
, 41
, pp. 1801
–1822
. 0020-7683166.
Mei
, C. C.
, Si
, B. I.
, and Chen
, Y. -S.
, 1985, “Dynamic Response in a Poroealstic Ground Induced by a Moving Air Pressure
,” Wave Motion
, 7
, pp. 129
–141
. 0165-2125167.
Cai
, Y.
, Sun
, H.
, and Xu
, C.
, 2007, “Steady State Response of Poroelastic Half-Space Soil Medium to a Moving Rectangular Load
,” Int. J. Solids Struct.
, 44
, pp. 7183
–7196
. 0020-7683168.
Chen
, S. L.
, Chen
, L. Z.
, and Zhang
, J. M.
, 2006, “Dynamic Response of a Flexible Plate on Saturated Soil Layer
,” Soil Dyn. Earthquake Eng.
0267-7261, 26
, pp. 637
–647
.169.
Cai
, Y. Q.
, Cheng
, Y. M.
, Au
, S. K. A.
, Xu
, C. J.
, and Ma
, X. H.
, 2008, “Vertical Vibration of an Elastic Strip Footing on Saturated Soil
,” Int. J. Numer. Analyt. Meth. Geomech.
0363-9061, 32
, pp. 493
–508
.170.
Theodorakopoulos
, D. D.
, Chassiakos
, A. P.
, and Beskos
, D. E.
, 2001, “Dynamic Pressures on Rigid Cantilever Walls Retaining Poroelastic Soil Media. Part I: First Method of Solution
,” Soil Dyn. Earthquake Eng.
0267-7261, 21
, pp. 315
–338
.171.
Theodorakopoulos
, D. D.
, Chassiakos
, A. P.
, and Beskos
, D. E.
, 2001, “Dynamic Pressures on Rigid Cantilever Walls Retaining Poroelastic Soil Media. Part II: Second Method of Solution
,” Soil Dyn. Earthquake Eng.
0267-7261, 21
, pp. 339
–364
.172.
Lanzoni
, L.
, Radi
, E.
, and Tralli
, A.
, 2007, “On the Seismic Response of a Flexible Wall Retaining a Viscous Poroelastic Soil
,” Soil Dyn. Earthquake Eng.
0267-7261, 27
, pp. 818
–842
.173.
Theodorakopoulos
, D. D.
, 2003, “Dynamic Pressures on a Pair of Rigid Walls Retaining Poro-Elastic Soil
,” Soil Dyn. Earthquake Eng.
0267-7261, 23
, pp. 41
–51
.174.
Theodorakopoulos
, D. D.
, and Beskos
, D. E.
, 2003, “Dynamic Pressures on a Pair of Rigid Walls Experiencing Base Rotation and Retaining Poroelastic Soil
,” Eng. Struct.
, 25
, pp. 359
–370
. 0141-0296175.
Cederbaum
, G.
, Li
, L.
, and Schulgasser
, K.
, 2000, Poroelastic Structures
, Elsevier
, Amsterdam
.176.
Theodorakopoulos
, D.
, and Beskos
, D.
, 1993, “Flexural Vibrations of Fissured Poroelastic Plates
,” Arch. Appl. Mech.
, 63
, pp. 413
–423
. 0939-1533177.
Theodorakopoulos
, D.
, and Beskos
, D.
, 1994, “Flexural Vibrations of Poroelastic Plates
,” Acta Mech.
0001-5970, 103
, pp. 191
–203
.178.
Busse
, A.
, Schanz
, M.
, and Antes
, H.
, 2003, “A Poroelastic Mindlin Plate
,” Proc. Appl. Math. Mech.
1617-7061, 3
, pp. 260
–261
.179.
Lewis
, R. W.
, and Schrefler
, B. A.
, 1998, The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media
, Wiley
, Chichester
.180.
Zienkiewicz
, O. C.
, Chan
, A. H. C.
, Pastor
, M.
, Schrefler
, B. A.
, and Shiomi
, T.
, 1999, Computational Geomechanics With Special Reference to Earthquake Engineering
, Wiley
, Chichester
.181.
Allard
, J.
, 1993, Propagation of Sound in Porous Media
, Elsevier Applied Science
, London
.182.
Ghaboussi
, J.
, and Wilson
, E. L.
, 1972, “Variational Formulation of Dynamics of Fluid-Saturated Porous Elastic Solids
,” J. Eng. Mech.
, 98
, pp. 947
–963
. 0001-4966183.
Zienkiewicz
, O. C.
, Chan
, A. H. C.
, Pastor
, M.
, Paul
, D. K.
, and Shiomi
, T.
, 1990, “Static and Dynamic Behaviour of Soils: A Rational Approach to Quantitative Solutions. I. Fully Saturated Problems
,” Proc. R. Soc. London, Ser. A
, 429
, pp. 285
–309
. 0080-4630184.
Simon
, B. R.
, Wu
, J. S. S.
, Zienkiewicz
, O. C.
, and Paul
, D. K.
, 1986, “Evaluation of u−w and u−p FEM for the Response of Saturated Porous Media Using One-Dimensional Models
,” Int. J. Numer. Analyt. Meth. Geomech.
0363-9061, 10
, pp. 461
–482
.185.
Simon
, B. R.
, Wu
, J. S. S.
, and Zienkiewicz
, O. C.
, 1986, “Evaluation of Higher Order, Mixed and Hermitean Finite Element Procedures for Dynamic Analysis of Saturated Porous Media Using One-Dimensional Models
,” Int. J. Numer. Analyt. Meth. Geomech.
0363-9061, 10
, pp. 483
–499
.186.
Zienkiewicz
, O. C.
, Hinton
, E.
, Leung
, K. H.
, and Taylor
, R. L.
, 1980, “Staggered Time Marching Schemes in Dynamic Soil Analysis and a Selective Explicit Extrapolation
,” Proceedings of the Second Symposium on Innovative Numerical Analysis for the Engineering Sciences
, University of Virginia Press
, Charlottesville
.187.
Zienkiewicz
, O. C.
, Paul
, D. K.
, and Chan
, A. H. C.
, 1988, “Unconditionally Stable Staggered Solution Procedure for Soil-Pore Fluid Interaction Problems
,” Int. J. Numer. Methods Eng.
0029-5981, 26
, pp. 1039
–1055
.188.
Zienkiewicz
, O. C.
, and Xie
, Y. M.
, 1991, “A Simple Error Estimator and Adaptive Time Stepping Procedure for Dynamic Analysis
,” Earthquake Eng. Struct. Dyn.
0098-8847, 20
, pp. 871
–887
.189.
Prevost
, J. H.
, 1982, “Nonlinear Transient Phenomena in Saturated Porous Media
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 30
, pp. 3
–18
.190.
Prevost
, J. H.
, 1985, “Wave Propagation in Fluid-Saturated Porous Media: An Efficient Finite Element Procedure
,” Soil Dyn. Earthquake Eng.
0267-7261, 4
, pp. 183
–202
.191.
Chen
, Z.
, Steeb
, H.
, and Diebels
, S.
, 2006, “A Time-Discontinuous Galerkin Method for the Dynamical Analysis of Porous Media
,” Int. J. Numer. Analyt. Meth. Geomech.
0363-9061, 30
, pp. 1113
–1134
.192.
Manzari
, M. T.
, 1996, “On Finite Deformation Dynamic Analysis of Saturated Soils
,” Arch. Mech.
0373-2029, 48
, pp. 281
–310
.193.
Li
, C.
, Borja
, R. I.
, and Regueiro
, R. A.
, 2004, “Dynamics of Porous Media at Finite Strain
,” Comput. Methods Appl. Mech. Eng.
, 193
, pp. 3837
–3870
. 0045-7825194.
Champoux
, Y.
, and Allard
, J.
, 1991, “Dynamic Tortuosity and Bulk Modulus in Air-Saturated Porous Media
,” J. Appl. Phys.
0021-8979, 70
, pp. 1975
–1979
.195.
Craggs
, A.
, 1978, “A Finite Element for Rigid Porous Absorbing Materials
,” J. Sound Vib.
0022-460X, 61
, pp. 101
–111
.196.
Coyette
, J.
, and Wynendaele
, H.
, 1995, “A Finite Element Model for Predicting the Acoustic Transmission Characteristics of Layered Structures
,” Proceedings of Inter-Noise 95
, R.
Bernhard
and J.
Bolton
, eds., Noise Control Foundation
, New York
, pp. 1279
–1282
.197.
Kang
, Y.
, and Bolton
, J.
, 1995, “Finite Element Modeling of Isotropic Elastic Porous Materials Coupled With Acoustical Finite Elements
,” J. Acoust. Soc. Am.
0001-4966, 98
, pp. 635
–643
.198.
Panneton
, R.
, and Atalla
, N.
, 1997, “An Efficient Finite Element Scheme for Solving the Three-Dimensional Poroelasticity Problem in Acoustics
,” J. Acoust. Soc. Am.
0001-4966, 101
, pp. 3287
–3298
.199.
Göransson
, P.
, 1998, “A 3-D, Symmetric, Finite Element Formulation of the Biot Equations With Application to Acoustic Wave Propagation Through an Elastic Porous Medium
,” Int. J. Numer. Methods Eng.
0029-5981, 41
, pp. 167
–192
.200.
Atalla
, N.
, Panneton
, R.
, and Debergue
, P.
, 1998, “A Mixed Displacement-Pressure Formulation for Poroelastic Materials
,” J. Acoust. Soc. Am.
0001-4966, 104
, pp. 1444
–1452
.201.
Bolton
, J.
, Shiau
, N. -M.
, and Kang
, Y.
, 1996, “Sound Transmission Through Multi-Panel Structures Lined With Elastic Porous Materials
,” J. Sound Vib.
0022-460X, 191
, pp. 317
–347
.202.
Debergue
, P.
, Panneton
, R.
, and Atalla
, N.
, 1999, “Boundary Conditions for the Weak Formulation of the Mixed (u,p) Poroelasticity Problem
,” J. Acoust. Soc. Am.
0001-4966, 106
, pp. 2383
–2390
.203.
Atalla
, N.
, Hamdi
, M. A.
, and Panneton
, R.
, 2001, “Enhanced Weak Integral Formulation for the Mixed (u,p) Poroelastic Equations
,” J. Acoust. Soc. Am.
0001-4966, 109
, pp. 3065
–3068
.204.
Bécot
, F. -X.
, and Sgard
, F.
, 2006, “On the Use of Poroelastic Materials for the Control of the Sound Radiated by a Cavity Backed Plate
,” J. Acoust. Soc. Am.
0001-4966, 120
, pp. 2055
–2066
.205.
Hörlin
, N. -E.
, Nordström
, M.
, and Göransson
, P.
, 2001, “A 3-D Hierarchical FE Formulation of Biot’s Equations for Elasto-Acoustic Modelling of Porous Media
,” J. Acoust. Soc. Am.
, 245
, pp. 633
–652
. 0001-4966206.
Hörlin
, N. -E.
, 2005, “3D Hierarchical hp-FEM Applied to Elasto-Acoustic Modelling of Layered Porous Media
,” J. Acoust. Soc. Am.
, 285
, pp. 341
–363
. 0001-4966207.
Rigobert
, S.
, Atalla
, N.
, and Sgard
, F.
, 2003, “Investigation of the Convergence of the Mixed Displacement-Pressure Formulation for Three-Dimensional Poroelastic Materials Using Hierarchical Elements
,” J. Acoust. Soc. Am.
0001-4966, 114
, pp. 2607
–2617
.208.
Bermúdez
, A.
, Ferrín
, J. L.
, and Prieto
, A.
, 2005, “A Finite Element Solution of Acoustic Propagation in Rigid Porous Media
,” Int. J. Numer. Methods Eng.
0029-5981, 62
, pp. 1295
–1314
.209.
Bermúdez
, A.
, Ferrín
, J. L.
, and Prieto
, A.
, 2006, “Finite Element Solution of New Displacement/Pressure Poroelastic Models in Acoustics
,” Comput. Methods Appl. Mech. Eng.
, 195
, pp. 1914
–1932
. 0045-7825210.
Degrande
, G.
, and De Roeck
, G.
, 1993, “An Absorbing Boundary Condition for Wave Propagation in Saturated Poroelastic Media—Part I: Formulation and Efficiency Evaluation
,” Soil Dyn. Earthquake Eng.
0267-7261, 12
, pp. 411
–421
.211.
Degrande
, G.
, and De Roeck
, G.
, 1993, “An Absorbing Boundary Condition for Wave Propagation in Saturated Poroelastic Media—Part II: Finite Element Formulation
,” Soil Dyn. Earthquake Eng.
0267-7261, 12
, pp. 423
–432
.212.
Khalili
, N.
, Yazdchi
, M.
, and Valliappan
, S.
, 1999, “Wave Propagation Analysis of Two-Phase Saturated Porous Media Using Coupled Finite-Infinite Element Method
,” Soil Dyn. Earthquake Eng.
0267-7261, 18
, pp. 533
–553
.213.
Shao
, X. -M.
, and Lan
, Z. -L.
, 2000, “Finite Element Methods for the Equations of Waves in Fluid-Saturated Porous Media
,” Chin. J. Geophys.
, 43
, pp. 291
–306
.214.
Geers
, T. L.
, 1971, “Residual Potential and Approximate Methods for Three-Dimensional Fluid-Structure Interaction Problems
,” J. Acoust. Soc. Am.
0001-4966, 49
, pp. 1505
–1510
.215.
Geers
, T. L.
, 1978, “Doubly Asymptotic Approximations for Transient Motions of Submerged Structures
,” J. Acoust. Soc. Am.
0001-4966, 64
, pp. 1500
–1508
.216.
Qi
, Q.
, and Geers
, T. L.
, 1997, “Double Asymptotic Approximations for Transient Poroelastodynamics
,” J. Acoust. Soc. Am.
0001-4966, 102
, pp. 1361
–1371
.217.
Beskos
, D. E.
, 1987, “Boundary Element Methods in Dynamic Analysis
,” Appl. Mech. Rev.
0003-6900, 40
, pp. 1
–23
.218.
Beskos
, D. E.
, 1997, “Boundary Element Methods in Dynamic Analysis: Part II (1986-1996)
,” Appl. Mech. Rev.
0003-6900, 50
(3
), pp. 149
–197
.219.
Cheng
, A. H.-D.
, and Cheng
, D.
, 2005, “Heritage and Early History of the Boundary Element Method
,” Eng. Anal. Boundary Elem.
, 29
, pp. 268
–302
. 0955-7997220.
Chopra
, M.
, 2001, “Poro-Elasticity Using BEM
,” Coupled Field Problems
(Advances in Boundary Elements
Vol. 11
), A. J.
Kassab
and M. H.
Aliabadi
, eds., WIT
, pp. 211
–240
.221.
Mansur
, W. J.
, 1983, “A Time-Stepping Technique to Solve Wave Propagation Problems Using the Boundary Element Method
,” Ph.D. thesis, University of Southampton, Southampton, UK.222.
Cruse
, T. A.
, and Rizzo
, F. J.
, 1968, “A Direct Formulation and Numerical Solution of the General Transient Elastodynamic Problem, I
,” J. Math. Anal. Appl.
0022-247X, 22
, pp. 244
–259
.223.
Lu
, J. -F.
, Jeng
, D. -S.
, and Williams
, S.
, 2008, “A 2.5-D Dynamic Model for a Saturated Porous Medium: Part II. Boundary Element Method
,” Int. J. Solids Struct.
, 45
, pp. 359
–377
. 0020-7683224.
Chen
, J.
, and Dargush
, G. F.
, 1995, “Boundary Element Method for Dynamic Poroelastic and Thermoelastic Analysis
,” Int. J. Solids Struct.
, 32
, pp. 2257
–2278
. 0020-7683225.
Schanz
, M.
, 2001, “Application of 3-d Boundary Element Formulation to Wave Propagation in Poroelastic Solids
,” Eng. Anal. Boundary Elem.
, 25
, pp. 363
–376
. 0955-7997226.
Schanz
, M.
, 2001, “Dynamic Poroelasticity Treated by a Time Domain Boundary Element Method
,” IUTAM/IACM/IABEM Symposium on Advanced Mathematical and Computational Mechanic Aspects of the Boundary Element Method
, T.
Burczynski
, ed., Kluwer Academic
, Dordrecht
, pp. 303
–314
.227.
Schanz
, M.
, 2001, Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element Approach
(Lecture Notes in Applied Mechanics
Vol. 2
), Springer-Verlag
, Berlin
.228.
Telles
, J. C. F.
, 1983, The Boundary Element Method Applied to Inelastic Problems
, Springer-Verlag
, Berlin
.229.
Soares
, D.
, Jr., Telles
, J. C. F.
, and Mansur
, W. J.
, 2006, “A Time-Domain Boundary Element Formulation for the Dynamic Analysis of Non-Linear Porous Media
,” Eng. Anal. Boundary Elem.
, 30
, pp. 363
–370
. 0955-7997230.
Maeso
, O.
, and Domínguez
, J.
, 1993, “Earthquake Analysis of Arch Dams. I: Dam-Foundation Interaction
,” J. Eng. Mech.
0733-9399, 119
, pp. 496
–512
.231.
Domínguez
, J.
, and Maeso
, O.
, 1993, “Earthquake Analysis of Arch Dams. II: Dam-Water-Foundation Interaction
,” J. Eng. Mech.
0733-9399, 119
, pp. 513
–530
.232.
Aznárez
, J.
, Maeso
, O.
, and Domínguez
, J.
, 2006, “BE Analysis of Bottom Sediments in Dynamic Fluid-Structure Interaction Problems
,” Eng. Anal. Boundary Elem.
, 30
, pp. 124
–136
. 0955-7997233.
Dargush
, G. F.
, and Chopra
, M. B.
, 1996, “Dynamic Analysis of Axisymmetric Foundations on Poroelastic Media
,” J. Eng. Mech.
0733-9399, 122
, pp. 623
–632
.234.
Maeso
, O.
, Aznárez
, J. J.
, and García
, F.
, 2005, “Dynamic Impedances of Piles and Group of Piles in Saturated Soils
,” Comput. Struct.
, 83
, pp. 769
–782
. 0045-7949235.
Kattis
, S. E.
, Beskos
, D. E.
, and Cheng
, A. H.-D.
, 2003, “2D Dynamic Response of Unlined and Lined Tunnels in Poroelastic Soil to Harmonic Body Waves
,” Earthquake Eng. Struct. Dyn.
0098-8847, 32
, pp. 97
–110
.236.
Rajapakse
, R. K. N. D.
, and Senjuntichai
, T.
, 1995, “An Indirect Boundary Integral Equation Method for Poroelasticity
,” Int. J. Numer. Analyt. Meth. Geomech.
0363-9061, 19
, pp. 587
–614
.237.
Senjuntichai
, T.
, Mani
, S.
, and Rajapakse
, R. K. N. D.
, 2006, “Vertical Vibration of an Embedded Rigid Foundation in a Poroelastic Soil
,” Soil Dyn. Earthquake Eng.
0267-7261, 26
, pp. 626
–636
.238.
Liang
, J.
, You
, H.
, and Lee
, V. W.
, 2006, “Scattering of SV Waves by a Canyon in a Fluid-Saturated, Poroelastic Layered Half-Space, Modeled Using the Indirect Boundary Element Method
,” Soil Dyn. Earthquake Eng.
0267-7261, 26
, pp. 611
–625
.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.