Abstract

This article describes the governing equations, computational algorithms, and other components entering into the Community Multiscale Air Quality (CMAQ) modeling system. This system has been designed to approach air quality as a whole by including state-of-the-science capabilities for modeling multiple air quality issues, including tropospheric ozone, fine particles, acid deposition, and visibility degradation. CMAQ was also designed to have multiscale capabilities so that separate models were not needed for urban and regional scale air quality modeling. By making CMAQ a modeling system that addresses multiple pollutants and different spatial scales, it has a “one-atmosphere” perspective that combines the efforts of the scientific community. To implement multiscale capabilities in CMAQ, several issues (such as scalable atmospheric dynamics and generalized coordinates), which depend on the desired model resolution, are addressed. A set of governing equations for compressible nonhydrostatic atmospheres is available to better resolve atmospheric dynamics at smaller scales. Because CMAQ is designed to handle scale-dependent meteorological formulations and a large amount of flexibility, its governing equations are expressed in a generalized coordinate system. This approach ensures consistency between CMAQ and the meteorological modeling system. The generalized coordinate system determines the necessary grid and coordinate transformations, and it can accommodate various vertical coordinates and map projections. The CMAQ modeling system simulates various chemical and physical processes that are thought to be important for understanding atmospheric trace gas transformations and distributions. The modeling system contains three types of modeling components (Models-3): a meteorological modeling system for the description of atmospheric states and motions, emission models for man-made and natural emissions that are injected into the atmosphere, and a chemistry-transport modeling system for simulation of the chemical transformation and fate. The chemical transport model includes the following process modules: horizontal advection, vertical advection, mass conservation adjustments for advection processes, horizontal diffusion, vertical diffusion, gas-phase chemical reactions and solvers, photolytic rate computation, aqueous-phase reactions and cloud mixing, aerosol dynamics, size distributions and chemistry, plume chemistry effects, and gas and aerosol deposition velocity estimation. This paper describes the Models-3 CMAQ system, its governing equations, important science algorithms, and a few application examples. This review article cites 114 references.

References

1.
Novak
,
J. H.
,
Dennis
,
R. L.
,
Byun
,
D. W.
,
Pleim
,
J. E.
,
Galluppi
,
K. J.
,
Coats
,
C. J.
,
Chall
,
S.
, and
Vouk
,
M. A.
, 1995, “
EPA Third-Generation Air Quality Modeling System
, Vol.
1
, Concept, EPA 600/R95/084, U. S. Environmental Protection Agency, Research Triangle Park, NC.
2.
Dennis
,
R. L.
,
Byun
,
D. W.
,
Novak
,
J. H.
,
Galluppi
,
K. J.
,
Coats
,
C. J.
, and
Vouk
,
M. A.
, 1996, “
The Next Generation of Integrated Air Quality Modeling: EPA’S Models-3
,”
Atmos. Environ.
1352-2310,
30
, pp.
1925
1938
.
3.
Byun
,
D. W.
,
Young
,
J.
,
Gipson
,
J.
,
Godowitch
,
J.
,
Binkowski
,
F.
,
Roselle
,
S.
,
Benjey
,
B.
,
Pleim
,
J.
,
Ching
,
J.
,
Novak
,
J.
,
Coats
,
C.
,
Odman
,
T.
,
Hanna
,
A.
,
Alapaty
,
K.
,
Mathur
,
R.
,
McHenry
,
J.
,
Shankar
,
U.
,
Fine
,
S.
,
Xiu
,
A.
, and
Jang
,
C.
, 1998, “
Description of the Models-3 Community Multiscale Air Quality (CMAQ) Model
,”
Proc. of Am. Meteorological Soc. 78th Annual Meeting
, Phoenix,
264
268
.
4.
SAI
, 1990, “
User’s Guide for the Urban Airshed Model
,” Volume
I-V
, Prepared by Systems Applications International, San Rafael, CA, Report No. SYSAPP-90/18a-e.
5.
McRae
,
G. J.
,
Russell
,
A. G.
, and
Harley
,
R. A.
, 1992, “
CIT Photochemical Airshed Model-Systems Manual
,”
Carnegie Mellon University
Report, Pittsburgh.
6.
Lamb
,
R. G.
, 1983, “
A Regional Scale (1000km) Model of Photochemical Air Pollution, Part 1: Theoretical Formulation
,” EPA-600/3–83–035, U.S. Environmental Protection Agency, Research Triangle Park, NC.
7.
Carmichael
,
G. R.
,
Peters
,
L. K.
, and
Saylor
,
R. D.
, 1991, “
The STEM-II Regional-Scale Acid Deposition and Photochemical Oxidant Model: I. An Overview of Model Development and Applications
,”
Atmos. Environ., Part A
0960-1686,
25A
, pp.
2077
2090
.
8.
Kumar
,
N.
,
Russell
,
A.
,
Segall
,
E.
, and
Steenkiste
,
P.
, 1996, “
Parallel and Distributed Application of an Urban and Regional Multiscale Model
,”
Comput. Chem. Eng.
0098-1354,
21
, pp.
399
408
.
9.
Environ
1998, “
User’s Guide for Comprehensive Air Quality Model With Extensions (CAMx) Version 2.0. Environ Corp.
,” Novato, CA.
10.
Chang
,
J. S.
,
Brost
,
R. A.
,
Isaksen
,
I. S. A.
,
Madronich
,
S.
,
Middleton
,
P.
,
Stockwell
,
W. R.
, and
Walcek
,
C. J.
, 1987, “
A Three-Dimensional Eulerian Acid Deposition Model: Physical Concepts and Formulation
,”
J. Geophys. Res.
0148-0227,
92
, pp.
14681
14700
.
11.
Anthes
,
R. A.
, and
Warner
,
T. T.
, 1978, “
Development of Hydrodynamic Models Suitable for Air Pollution and Other Mesometeorological Studies
,”
Mon. Weather Rev.
0027-0644,
106
, pp.
1045
1078
.
12.
Grell
,
G. A.
,
Dudhia
,
J.
, and
Stauffer
,
D. R.
, 1995, “
A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5)
,” NCAR Technical Note, NCAR/TN-398+STR, Boulder, CO.,
138
pp.
13.
Chang
,
J. S.
,
Jin
,
S.
,
Li
,
Y.
,
Beauharnois
,
M.
,
Chang
,
K.-H.
,
Huang
,
H.-C.
,
Lu
,
C.-H.
,
Wojcik
,
G.
,
Tanrikulu
,
S.
, and
DaMassa
,
J.
, 1996, “
The SARMAP Air Quality Model Part 1 of SAQM Final Report
,” California Air Resources Board, Sacramento.
14.
Hass
,
H.
, 1991, “
Description of the EURAD Chemistry Transport Module (CTM) Version 2
,” In
A.
Ebel
,
F. M.
Neubauer
, and
P.
Speth
, eds., Report 83, Institute of Geophysics and Meteorology,
University of Cologne
, Cologne, Germany.
15.
Grell
,
G. A.
,
Emeis
,
S.
,
Stockwell
,
W. R.
,
Schoenemeyer
,
T.
,
Forkel
,
R.
,
Michalakes
,
J.
,
Knoche
,
R.
, and
Seidl
,
W.
, 2000, “
Application of a Multiscale, Coupled MM5/Chemistry Model to the Complex Terrain of the VOTALP Valley Campaign
,”
Atmos. Environ.
1352-2310,
34
, pp.
1435
1453
.
16.
Jacobson
,
M. Z.
,
Lu
,
R.
,
Turco
,
R. P.
, and
Toon
,
O. B.
, 1996, “
Development and Application of a New Air Pollution Modeling System—Part I: Gas-Phase Simulations
,”
Atmos. Environ.
1352-2310,
30
, pp.
1939
1963
.
17.
Vautard
,
R.
,
Beekmann
,
M.
,
Roux
,
J.
, and
Gombert
,
D.
, 2000, “
Validation of a Deterministic Forecasting System for the Ozone Concentrations Over the Paris Area
,”
Atmos. Environ.
1352-2310,
35
, pp.
2449
2461
.
18.
Robertson
,
L.
,
Langner
,
J.
,
Engardt
,
M.
, 1999, “
An Eulerian Limited-Area Atmospheric Transport Model
,”
J. Appl. Meteorol.
0894-8763,
38
, pp.
190
210
.
19.
Källén
,
E.
, 1996, “
HIRLAM Documentation Manual—System 2.5
,” (available from SMHI, SE-601 76 Norrköping, Sweden).
20.
Brandt
,
J.
,
Christensen
,
J. H.
,
Frohn
,
L. M.
, and
Zlatev
,
Z.
, 2001, “
Operational Air Pollution Forecast Modelling by Using the THOR System
,”
Phys. Chem. Earth, Part B
1464-1909,
26
, pp.
117
122
.
21.
Zlatev
,
Z.
,
Dimov
,
I.
, and
Georgiev
,
K.
, 1996, “
Three-Dimensional Version of the Danish Eulerian Model
,”
Z. Angew. Math. Mech.
0044-2267,
76
, pp.
473
476
.
22.
Fast
,
J. D.
,
Zaveri
,
R. A.
,
Xindi
,
B.
,
Chapman
,
E. G.
, and
Easter
,
R. C.
, 2002, “
Effect of Regional-Scale Transport on Oxidants in the Vicinity of Philadelphia During the 1999 NE-OPS Field Campaign
,”
J. Geophys. Res.
0148-0227,
107
, p.
4307
.
23.
Pielke
,
R. A.
,
Cotton
,
W. R.
,
Walko
,
R. L.
,
Tremback
,
C. J.
,
Lyons
,
W. A.
,
Grasso
,
L. D.
,
Nicholls
,
M. E.
,
Moran
,
M. D.
,
Wesely
,
D. A.
,
Lee
,
T. J.
, and
Copeland
,
J. H.
, 1992, “
A Comprehensive Meteorological Modeling System-RAMS
,”
Meteorol., Atmos. Phys.
,
49
, pp.
69
91
.
24.
Coats
,
C. J.
, Jr.
, and
Houyoux
,
M. R.
, 1996, “
Fast Emissions Modeling With the Sparse Matrix Operator Kernel Emissions Modeling System
,”
The Emissions Inventory: Key to Planning, Permits, Compliance, and Reporting, Air and Waste Management Association
, New Orleans, September.
25.
Houyoux
,
M. R.
, and
Vukovich
,
J. M.
, 1999, “
Updates to the Sparse Matrix Operator Kernel Emission (SMOKE) Modeling System and Integration With Models-3
,”
The Emission Inventory: Regional Strategies for the Future
, October 26–28, Raleigh, NC, Air and Waste Management Association.
26.
Coats
,
C. J.
,
Trayanov
,
A.
,
McHenry
,
J. N.
,
Xiu
,
A.
,
Gibbs-Lario
,
A.
, and
Peters-Lidard
,
C. D.
, 1999, “
An Extension of the EDSS/Models-3 I/O API for Coupling Concurrent Environmental Models, In Applications to Air Quality and Hydrology
,”
Preprints, 15th IIPS Conf.
, Amer. MeteoR. Soc., Dallas, Jan. 10–15.
27.
Rew
,
R. K.
, and
Davis
,
G. P.
, 1990, “
NetCDF: An Interface for Science Data Access
,”
IEEE Comput. Graphics Appl.
0272-1716,
10
, pp.
76
82
.
28.
Byun
,
D. W.
, 1999, “
Dynamically Consistent Formulations in Meteorological and Air Quality Models for Multi-Scale Atmospheric Applications, Part I: Governing Equations in Generalized Coordinate System
,”
J. Atmos. Sci.
0022-4928,
56
, pp.
3789
3807
.
29.
Byun
,
D. W.
, 1999, “
Dynamically Consistent Formulations in Meteorological and Air Quality Models for Multi-Scale Atmospheric Applications, Part II: Mass Conservation Issues
,”
J. Atmos. Sci.
0022-4928,
56
,
3808
3820
.
30.
Ooyama
,
K. V.
, 1990, “
A Thermodynamic Foundation for Modeling the Moist Atmosphere
,”
J. Atmos. Sci.
0022-4928,
47
, pp.
2580
2593
.
31.
Seaman
,
N. L.
, 2000, “
Meteorological Modeling for Air-Quality Assessments
,”
Atmos. Environ.
1352-2310,
34
, pp.
2231
2259
.
32.
Stauffer
,
D. R.
, and
Seaman
,
N. L.
, 1994, “
Multiscale Four-Dimensional Data Assimilation
,”
J. Appl. Meteorol.
0894-8763,
33
, pp.
416
434
.
33.
Tremback
,
C. J.
, 1990, “
Numerical Simulation of a Mesoscale Convective Complex: Model Development and Numerical Results
,” Ph.D. dissertation, Colorado State University.
34.
Sugata
,
S.
,
Byun
,
D. W.
, and
Uno
,
I.
, 2000, “
Simulation of Sulfate Aerosol in East Asia Using Models-3/CMAQ With RAMS Meteorological Data
,”
Millennium NATO/CCMS International Technical Meeting on Air Pollution Modelling and Its Applications
, Boulder, CO, May 15–19.
35.
Seaman
,
N. L.
, 1995, “
Status of Meteorological Pre-Processors for Air-Quality Modeling
,”
Proc. of Int. Conf. on Particulate Matter
, Pittsburgh, Air and Waste Management Association, pp.
639
650
.
36.
Vogel
,
B.
,
Fiedler
,
F.
, and
Vogel
,
H.
, 1995, “
Influence of Topography and Biogenic Volatile Organic Compounds Emission in the State of Baden-Wurttemberg on Ozone Concentrations During Episodes of High Air Temperatures
,”
J. Geophys. Res.
0148-0227,
100
, pp.
22
,
Vogel
,
B.
,
Fiedler
,
F.
, and
Vogel
,
H.
, 1995, “
Influence of Topography and Biogenic Volatile Organic Compounds Emission in the State of Baden-Wurttemberg on Ozone Concentrations During Episodes of High Air Temperatures
,”
J. Geophys. Res.
0148-0227,
100
,
907
22
,
Vogel
,
B.
,
Fiedler
,
F.
, and
Vogel
,
H.
, 1995, “
Influence of Topography and Biogenic Volatile Organic Compounds Emission in the State of Baden-Wurttemberg on Ozone Concentrations During Episodes of High Air Temperatures
,”
J. Geophys. Res.
0148-0227,
100
,
928
.
37.
Xiu
,
A.
,
Mathur
,
R.
,
Coats
,
C.
, and
Alapaty
,
K.
, 1998, “
On the Development of an Air Quality Modeling System With Integrated Meteorology, Chemistry, and Emissions
,”
Proc. of Int. Symp. on Measurement of Toxic and Related Air Pollutants
,
Research Triangle Park
, NC, pp.
144
152
.
38.
Dudhia
,
J.
,
Gill
,
D.
,
Klemp
,
J.
, and
Skamarock
,
W.
, 1998, “
WRF: Current Status of Model Development and Plans for the Future
,”
Preprint of Eighth PSU/NCAR Mesoscale Model User’s Workshop
, Boulder, CO, June 15–16.
39.
Klemp
,
J. B.
,
Skamarock
,
W. C.
, and
Dudhia
,
J.
, 2001, “
Conservative Split-Explicit Time Integration Methods for the Compressible Nonhydrostatic Equations
,” available at http://www.mmm.ucar.edu/individual/skamarock/wrf_equations_eulerian.pdfhttp://www.mmm.ucar.edu/individual/skamarock/wrf_equations_eulerian.pdf
40.
Benjey
,
W. G.
, and
Moghari
,
N. M.
, 1996, “
Functionality of an Integrated Emission Preprocessing System for Air Quality Modeling: The Models-3 Emission Processor
,”
The Emissions Inventory: Programs and Progress
, VIP-56,
Proc. of a Specialty Conf.
, Research Triangle Park, NC, Oct. 11–13, U.S. EPA, Research Triangle Park, NC, and A&WMA, Pittsburgh, pp.
463
471
.
41.
Benjey
,
W. G.
,
Godowitch
,
J. M.
, and
Gipson
,
G. L.
, 1999, “
Emission Subsystem
,”
Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System
,
D.
Byun
and
J. K. S.
Ching
, eds.,
National Exposure Research Laboratory
, U.S. EPA, Research Triangle Park, NC, Chap. 4.
42.
Fratt
,
D. B.
,
Mudgett
,
D. F.
, and
Walters
,
R. A.
, 1990, “
The 1985 NAPAP Emissions Inventory: Development of Temporal Allocation Factors
,” EPA-600/7-89-010d, U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC, 209 pp.
43.
Moody
,
T.
,
Winkler
,
J. D.
,
Wilson
,
T.
, and
Kersteter
,
S.
, 1995, “
The Development and Improvement of Temporal Allocation Factor Files
,” EPA-600/R-95-004, U.S. Environmental Protection Agency, Office of Research and Development.
44.
Carter
,
W. P. L.
, 2000, “
Implementation of the SAPRC-99 Chemical Mechanism Into the Models-3 Framework
,” Final Report to U.S. EPA.
45.
Pierce
,
T.
,
Geron
,
C.
,
Bender
,
L.
,
Dennis
,
R.
,
Tennyson
,
G.
, and
Guenther
,
A.
, 1998, “
The Influence of Increased Isoprene Emissions on Regional Ozone Modeling
,”
J. Geophys. Res.
0148-0227,
103
, pp.
25611
25629
.
46.
Guenther
,
A.
,
Geron
,
C.
,
Pierce
,
T.
,
Lamb
,
B.
,
Harley
,
P.
, and
Fall
,
R.
, 2000, “
Natural Emissions of Non-Methane Volatile Organic Compounds, Carbon Monoxide, and Oxides of Nitrogen From North America
,”
Atmos. Environ.
1352-2310,
34
, pp.
2205
2230
.
47.
U.S. EPA 2002, “
User’s Guide to Mobile 6.1 and Mobile 6.2: Mobile Source Emission Factor Model
,” EPA 420-R-02-028, Office of Air And Radiation, Office of Transportation and Air Quality.
48.
Toon
,
O. B.
,
Turco
,
R. P.
,
Westphal
,
D.
,
Malone
,
R.
, and
Liu
,
M. S.
, 1988, “
A Multidimensional Model for Aerosols: Description of Computational Analogs
,”
J. Atmos. Sci.
0022-4928,
45
, pp.
2123
2143
.
49.
Pleim
,
J. E.
, 1990, “
Development and Application of New Modeling Techniques for Mesoscale Atmospheric Chemistry
,” Ph.D. thesis, State University of New York at Albany.
50.
Jeffries
,
H. E.
, and
Tonnesen
,
S.
, 1994, “
A Comparison of Two Photochemical Reaction Mechanisms Using Mass Balance and Process Analysis
,”
Atmos. Environ.
1352-2310,
28
(
18
), pp.
2991
3003
.
51.
Jang
,
J. C.
,
Jeffries
,
H. E.
,
Byun
,
D. W.
, and
Pleim
,
J. E.
, 1995, “
Sensitivity of Ozone to Model Grid Resolution-I: Application of High-Resolution Regional Acid Deposition Model
,”
Atmos. Environ.
1352-2310,
29
(
21
), pp.
3085
3100
.
52.
Jang
,
J. C.
,
Jeffries
,
H. E.
, and
Tonnesen
,
S.
, 1995, “
Sensitivity of Ozone to Model Grid Resolution-II: Detailed Process Analysis for Ozone Chemistry
,”
Atmos. Environ.
1352-2310,
29
(
21
), pp.
3101
3114
.
53.
Colella
,
P.
, and
Woodward
,
P. R.
, 1984, “
The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations
,”
J. Comput. Phys.
0021-9991,
54
, pp.
174
201
.
54.
Bott
,
A.
, 1989, “
A Positive Definite Advection Scheme Obtained by Nonlinear Renormalization of the Advective Fluxes
,”
Mon. Weather Rev.
0027-0644,
117
, pp.
1006
1015
.
55.
Odman
,
M. T.
, 1998, “
Research on Numerical Transport Algorithms for Air Quality Simulation Models
,” EPA Report. EPA/660/R-97/142, National Exposure Research Laboratory, U.S. EPA, Research Triangle Park, NC.
56.
Byun
,
D. W.
,
Young
,
J.
,
Pleim
,
J.
,
Odman
,
M. T.
, and
Alapaty
,
K.
, 1999, “
Numerical Transport Algorithms for the Community Multiscale Air Quality (CMAQ) Chemical Transport Model in Generalized Coordinates
,”
Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System
,
D. W.
Byun
and
J. K. S.
Ching
, eds.,
National Exposure Research Laboratory
, U.S. EPA, Research Triangle Park, NC, Chap. 7.
57.
Smagorinsky
,
J.
, 1963, “
General Circulation Experiments With the Primitive Equations, 1: The Basic Experiment
,”
Mon. Weather Rev.
0027-0644,
91
, pp.
99
164
.
58.
Stull
,
R. B.
, 1988,
An Introduction to Boundary Layer Meteorology
,
Kluwer Academic Publishers
, Dordrecht.
59.
von Rosenberg
,
D.
, 1969,
Methods for the Numerical Solution of Partial Differential Equations
,
Elsevier
, New York, p.
113
.
60.
Pleim
,
J. E.
, and
Chang
,
J.
, 1992, “
A Non-Local Closure Model for Vertical Mixing in the Convective Boundary Layer
,”
Atmos. Environ., Part A
0960-1686,
26A
, pp.
965
981
.
61.
Chang
,
J. S.
,
Jin
,
S.
,
Li
,
Y.
,
Beauharnois
,
M.
,
Lu
,
C. H.
,
Huang
,
H. C.
,
Tanrikulu
,
S.
, and
DaMassa
,
J.
, 1997, “
The SARMAP Air Quality Model
,” Final Report, SJVAQ/AUSPEX Regional Modeling Adaptation Project,
53
pp. (available from California Air Resources Board, 2020 L St, Sacramento, CA 95814).
62.
Brost
,
R. A.
, and
Wyngaard
,
J. C.
, 1978, “
A Model Study of the Stably Stratified Planetary Boundary Layer
,”
J. Atmos. Sci.
0022-4928,
35
, pp.
1427
1440
.
63.
Hass
,
H.
,
Jakobs
,
H. J.
,
Memmescheimer
,
M.
,
Ebel
,
A.
, and
Chang
,
J. S.
, 1991, “
Simulation of a Wet Deposition Case in Europe Using the European Acid Deposition Model (EURAD)
,”
Air Pollution Modelling and Its Applications
, Vol.
VIII
H.
van Dop
and
D. G.
Steyn
, eds.,
Plenum Press
, New York, pp.
205
213
.
64.
Byun
,
D. W.
, and
Dennis
,
R. L.
, 1995, “
Design Artifacts in Eulerian Air Quality Models: Evaluation of the Effects of Layer Thickness and Vertical Profile Correction on Surface Ozone Concentrations
,”
Atmos. Environ.
1352-2310,
29
, pp.
105
126
.
65.
Wesely
,
M. L.
, 1989, “
Parametrization of Surface Resistances to Gaseous Dry Deposition in Regional-Scale Numerical Models
,”
Atmos. Environ.
0004-6981,
23
, pp.
1293
1304
.
66.
Pleim
,
J. E.
,
Clarke
,
J. F.
,
Finkelstein
,
P. L.
,
Cooter
,
E. J.
,
Ellestad
,
T. G.
,
Xiu
,
A.
, and
Angevine
,
W. M.
, 1996, “
Comparison of Measured and Modeled Surface Fluxes of Heat, Moisture and Chemical Dry Deposition
,”
Air Pollution Modeling and its Applications XI
,
S.
Gryning
and
F.
Schiermeier
, eds.,
Plenum Press
, New York.
67.
Byun
,
D.
,
Pleim
,
J.
,
Tang
,
R.
, and
Bourgeois
,
A.
, 1999,
Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System
,
D.
Byun
and
J. K. S.
Ching
, eds.,
National Exposure Research Laboratory
, U.S. EPA, Research Triangle Park, NC.
68.
Madronich
,
S.
, 1987, “
Intercomparison of NO2 Photodissociation and UV Radiometer Measurements
,”
Atmos. Environ.
0004-6981,
21
, pp.
569
578
.
69.
Joseph
,
J. H.
,
Wiscombe
,
W. J.
, and
Weinman
,
J. A.
, 1976, “
The Delta-Eddington Approximation for Radiative Flux Transfer
,”
J. Atmos. Sci.
0022-4928,
33
, pp.
2452
2459
.
70.
World Meteorological Organization
, 1986, Atmospheric Ozone 1985: Assessment of our Understanding of the Processes Controlling its Present Distribution and Change, WMO Rep. No. 16; Global Ozone Research and Monitoring Project, Geneva.
71.
Chang
,
J. S.
,
Binkowski
,
F. S.
,
Seaman
,
N. L.
,
Byun
,
D. W.
,
McHenry
,
J. N.
,
Samson
,
P. J.
,
Stockwell
,
W. R.
,
Walcek
,
C. J.
,
Madronich
,
S.
,
Middleton
,
P. B.
,
Pleim
,
J. E.
, and
Landsford
,
H. L.
, 1990, The Regional Acid Deposition Model and Engineering Model, NAPAP SOS/T Report 4, in National Acid Precipitation Assessment Program, Acidic Deposition: State of Science and Technology, Volume
I
, Washington, D. C.
72.
DeMore
,
W. B.
,
Sander
,
S. P.
,
Golden
,
D. M.
,
Hampson
,
R. F.
,
Kurylo
,
M. J.
,
Howard
,
C. J.
,
Ravishankara
,
A. R.
,
Kolb
,
C. E.
, and
Molina
,
M. J.
, 1994, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling: Evaluation Number 11, JPL Pub. 94-26, National Aeronautics and Space Administration, Jet Propulsion Laboratory, Pasadena, CA.
73.
Demerjian
,
K. L.
,
Schere
,
K. L.
, and
Peterson
,
J. T.
, 1980, “
Theoretical Estimates of Actinic (Spherically Integrated) Flux and Photolytic Rate Constants of Atmospheric Species in the Lower Troposphere
,”
Advances in Environmental Science and Technology
, Vol.
10
,
Wiley
, New York, pp.
369
459
.
74.
Elterman
,
L.
, 1968, “
UV, Visible, and IR Attenuation for Altitudes to 50km
,” AFCRL-68–0153,
Air Force Cambridge Res. Lab.
, Bedford, MA.
75.
Stephens
,
G. L.
, 1978, “
Radiation Profiles in Extended Water Clouds, II: Parametrization Schemes
,”
J. Atmos. Sci.
0022-4928,
35
, pp.
2123
2132
.
76.
Gery
,
M. W.
,
Whitten
,
G. Z.
,
Killus
,
J. P.
, and
Dodge
,
M. C.
, 1989, “
A Photochemical Kinetics Mechanism for Urban and Regional Scale Computer Modeling
,”
J. Geophys. Res.
0148-0227,
94
, pp.
12,925
12,956
.
77.
Stockwell
,
W. R.
,
Middleton
,
P.
, and
Chang
,
J. S.
, 1990, “
The Second Generation Regional Acid Deposition Model Chemical Mechanism for Regional Air Quality Modeling
,”
J. Geophys. Res.
0148-0227,
95
(
D10
), pp.
16,343
16,367
.
78.
Carter
,
W. P. L.
, and
Atkinson
,
R.
, 1996, “
Development and Evaluation of a Detailed Mechanism for the Atmospheric Reactions of Isoprene and NOx
,”
Int. J. Chem. Kinet.
0538-8066,
28
, pp.
497
530
.
79.
Carter
,
W. P. L.
, 1996, “
Condensed Atmospheric Photooxidation Mechanisms for Isoprene
,”
Atmos. Environ.
1352-2310,
30
, pp.
4275
4290
.
80.
Carter
,
W. P. L.
, 1994, “
Development of Ozone Reactivity Scales for Volatile Organic Compounds
,”
Air Waste
1073-161X,
44
, pp.
881
899
.
81.
Carter
,
W. P. L.
, 2000, “
Documentation of the SAPRC-99 Chemical Mechanism for VOC Reactivity Assessment
,” Final Report to the California Air Resources Board, Contracts No. 92-329 and No. 95-308.
82.
Jacob
,
D. J.
, 2000, “
Heterogeneous Chemistry and Tropospheric Ozone
,”
Atmos. Environ.
1352-2310,
34
, pp.
2131
2159
.
83.
Gong
,
W.
, and
Cho
,
H. R.
, 1993, “
A Numerical Scheme for the Integration of the Gas-Phase Chemical Rate Equations in Three-Dimensional Atmospheric Models
,”
Atmos. Environ., Part A
0960-1686,
27A
, pp.
2147
2160
.
84.
Gear
,
C. W.
, 1971,
Numerical Initial Value Problems in Ordinary Differential Equations
,
Prentice-Hall
, Englewood Cliffs, NJ.
85.
Jacobson
,
M.
, and
Turco
,
R. P.
, 1994, “
SMVGEAR: A Sparse-Matrix, Vectorized Gear Code for Atmospheric Models
,”
Atmos. Environ.
1352-2310,
28
, pp.
273
284
.
86.
Carmichael
,
G. R.
,
Peters
,
L. K.
, and
Kitada
,
T.
, 1986, “
A Second Generation Model for Regional-Scale Transport/Chemistry/Deposition
,”
Atmos. Environ.
0004-6981,
20
, pp.
173
188
.
87.
Mathur
,
R.
,
Young
,
J. O.
,
Schere
,
K. L.
, and
Gipson
,
G. L.
, 1998, “
A Comparison of Numerical Techniques for Solution of Atmospheric Kinetic Equations
,”
Atmos. Environ.
1352-2310,
32
, pp.
1535
1553
.
88.
Young
,
J. O.
,
Sills
,
E.
, and
Jorge
,
D.
, 1993, Optimization of the Regional Oxidant Model for the Cray Y-MP, EPA/600/R-94–065, U. S. EPA, Research Triangle Park, NC.
89.
Hertel
,
O.
,
Berkowicz
,
R.
,
Christensen
,
J.
, and
Hov
,
O.
, 1993, “
Test of Two Numerical Schemes for Use in Atmospheric Transport-Chemistry Models
,”
Atmos. Environ., Part A
0960-1686,
27A
, pp.
2591
2611
.
90.
Huang
,
H. C.
, and
Chang
,
J. S.
, 2001, “
On the Performance of Numerical Solvers for a Chemistry Submodel in Three-Dimensional Air Quality Models, Part 1: Box-Model Simulations
,”
J. Geophys. Res.
0148-0227,
188
, pp.
20175
20188
.
91.
Binkowski
,
F. S.
, and
Roselle
,
S. J.
, 2003, “
Models-3 Community Multiscale Air Quality (CMAQ] Model Aerosol Component. I: Model Description
,”
J. Geophys. Res.
0148-0227,
108
(
D6
),
4183
.
92.
Binkowski
,
F. S.
, and
Shankar
,
U.
, 1995, “
The Regional Particulate Model, I: Model Description and Preliminary Results
,”
J. Geophys. Res.
0148-0227,
100
(
D12
), pp.
26191
26209
.
93.
Nenes
,
A.
,
Pandis
,
S. N.
, and
Pilinis
,
C.
, 1998, “
ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols
,”
Aquat. Geochem.
1380-6165,
4
, pp.
123
152
.
94.
Nenes
,
A.
,
Pilinis
,
C.
, and
Pandis
,
S. N.
, 1998, “
Continued Development and Testing of a New Thermodynamic Aerosol Module for Urban and Regional Air Quality Models
,”
Atmos. Environ.
1352-2310,
33
, pp.
1553
1560
.
95.
Seigneur
,
C.
,
Huidischewski
,
A. B.
,
Seinfeld
,
J. H.
,
Whitby
,
K. T.
,
Whitby
,
E. R.
,
Brock
,
J. R.
, and
Barnes
,
H. M.
, 1986, “
Simulation of Aerosol Dynamics: A Comparative Review of Mathematical Models
,”
Aerosol Sci. Technol.
0278-6826,
5
, pp.
205
222
.
96.
Whitby
,
K. T.
, 1978, “
The Physical Characteristics of Sulfur Aerosols
,”
Atmos. Environ.
0004-6981,
12
, pp.
135
159
.
97.
Dentener
,
F. J.
, and
Crutzen
,
P. J.
, 1993, “
Reaction of N2O5 on the Tropospheric Aerosols: Impact on the Global Distributions of NOx, O3, and, OH
,”
J. Geophys. Res.
0148-0227,
98
, pp.
7149
7163
.
98.
Riemer
,
N.
,
Vogel
,
H.
,
Vogel
,
B.
,
Schell
,
B.
,
Ackermann
,
I.
,
Kessler
,
C.
, and
Hass
,
H.
, 2003, “
Impact of the heterogeneous hydrolysis of N2O5 on chemistry and nitrate aerosol formation in the lower troposphere under photosmog conditions
,”
J. Geophys. Res.
0148-0227,
108
, p.
4144
.
99.
Mentel
,
T. F.
,
Sohn
,
M.
, and
Wahner
,
A.
, 1999, “
Nitrate Effect on the Heterogeneous Hydrolysis of Dintrogen Pentoxide on Aqueous Aerosols
,”
J. Phys. Chem.
0022-3654,
1
, pp.
5451
5457
.
100.
Schell
,
B.
,
Ackermann
,
I. J.
,
Hass
,
H.
,
Binkowski
,
F. S.
, and
Ebel
,
A.
, 2001, “
Modeling the Formation of Secondary Organic Aerosol Within a Comprehensive Air Quality Model System
,”
J. Geophys. Res.
0148-0227,
106
, pp.
28275
28293
.
101.
Odum
,
J. R.
,
Jungkamp
,
T. P. W.
,
Griffin
,
R. J.
,
Flagan
,
R. C.
, and
Seinfeld
,
J. H.
, 1997, “
The Atmospheric Aerosol-Forming Potential of Whole Gasoline Vapor
,”
Science
0036-8075,
276
, pp.
96
99
.
102.
Griffin
,
R. J.
,
Cocker
,
D. R.
,
Flagan
,
R. C.
, and
Seinfeld
,
J. H.
, 1999, “
Organic Aerosol Formation from the Oxidation of Biogenic Hydrocarbons
,”
J. Geophys. Res.
0148-0227,
104
, pp.
3555
3567
.
103.
Strader
,
R.
,
Lurmann
,
F.
, and
Pandis
,
S. N.
, 1999, “
Evaluation of Secondary Organic Aerosol Formation in Winter
,”
Atmos. Environ.
1352-2310,
33
, pp.
4849
4863
.
104.
Dennis
,
R. L.
,
McHenry
,
J. N.
,
Barchet
,
W. R.
,
Binkowski
,
F. S.
, and
Byun
,
D. W.
, 1993, “
Correcting RADM’s Sulfate Underprediction: Discovery and Correction of Model Errors and Testing the Corrections Through Comparisons Against Field Data
,”
Atmos. Environ., Part A
0960-1686,
26A
(
6
), pp.
975
997
.
105.
Walcek
,
C. J.
, and
Taylor
,
G. R.
, 1986, “
A Theoretical Method for Computing Vertical Distributions of Acidity and Sulfate Production Within Cumulus Clouds
,”
J. Atmos. Sci.
0022-4928,
43
, pp.
339
355
.
106.
Kim
,
Y. P.
,
Seinfeld
,
J. H.
, and
Saxena
,
P.
, 1993, “
Atmospheric Gas-Aerosol Equilibrium, I: Thermodynamics Model
,”
Aerosol Sci. Technol.
0278-6826,
19
, pp.
157
181
.
107.
Binkowski
,
F. S.
, 1999, “
Aerosols in Models-3 CMAQ
,”
Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System
,
D. W.
Byun
and
J. K. S.
Ching
, eds.,
National Exposure Research Laboratory
, U.S. EPA, Research Triangle Park, NC, Chap. 10.
108.
Gillani
,
N. V.
, and
Godowitch
,
J. M.
, 1999, “
Plume-in-Grid Treatment of Major Point Source Emissions
,”
Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System
,
D. W.
Byun
and
J. K. S.
Ching
, eds.,
National Exposure Research Laboratory
, U.S. EPA, Research Triangle Park, NC, Chap. 9.
109.
Godowitch
,
J. M.
, and
Young
,
J. O.
, 2000, “
Photochemical Simulations of Point Source Emissions With The Models-3 CMAQ Plume-in-Grid Approach
,”
A&WMA 91st Annual Meeting
, Salt Lake City.
110.
Godowitch
,
J. M.
, 2001, “
Results of Photochemical Simulations of Subgrid Scale Point Source Emissions With the Models-3 CMAQ Modeling System
,”
Millenium Symposium on Atmospheric Chemistry, Proc. of American Meteorological Society
, Jan. 14–18,
Albuquerque
, pp.
43
49
.
111.
U. S. EPA, 2003, 1999 National Emission Inventory Documentation and Data, available at http://www.epa.gov/ttn/chief/net/1999inventory.htmlhttp://www.epa.gov/ttn/chief/net/1999inventory.html
113.
Allen
,
D. T.
,
Estes
,
M.
,
Smith
,
J.
, and
Jeffries
,
H.
, 2002, “
Accelerated Science Evaluation of Ozone Formation in the Houston-Galveston Area: Overview
,” available at http://www.utexas.edu/research/ceer/texaqsarchivehttp://www.utexas.edu/research/ceer/texaqsarchive
114.
Nielsen-Gammon
,
J. W.
, 2002, “
Meteorological Modeling for the August 2000 Houston-Galveston Ozone Episode: METSTAT Statistical Evaluation and Model Runs from March-June 2002
,” Report to the Technical Analysis Division Texas Natural Resource Conservation Commission, June.
You do not currently have access to this content.