This review article gives an overview of the new and quickly developing field of shape memory alloy (SMA) actuators in smart structures. The focus is on the aspects of modeling and simulation of such structures, a task that goes beyond classical modeling approaches as it has to combine constitutive modeling with structural and control aspects in a highly interdisciplinary way. We review developments in each of these fields, trying to combine them into a smooth picture of how to treat the problem efficiently. After a discussion of modeling aspects with particular regard to actuator applications, the simulation of standard feedback control methods is demonstrated. Subsequently, model based methods from optimal control theory are presented, accounting for the strongly nonlinear and hysteretic material behavior of SMAs. Real-time optimal control methods are introduced and, finally, aspects of finite element implementation of an SMA actuator model are discussed and illustrated by the simulation of an adaptive aircraft wing. This review article cites 155 references.

1.
O¨lander
A
(
1932
),
Z Christ
32A
,
145
145
.
2.
O¨lander
A
(
1932
),
J. Am. Chem. Soc.
54
,
3819
3819
.
3.
Bu¨hler
JW
,
Gilfrich
JV
, and
Wiley
RC
(
1963
),
Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi
,
J. Appl. Phys.
34
,
1475
1477
.
4.
Funakubo H (ed), (1984), Shape Memory Alloys, Gordon and Breach Science Publishers.
5.
Otsuka K and Wayman CM (eds), (1998), Shape Memory Materials, Cambridge Univ Press, UK.
6.
Otsuka
K
and
Ren
X
(
1999
),
Martensitic transformations in nonferrous memory alloys
,
Mater. Sci. Eng., A
A273–275
,
89
105
.
7.
Otsuka
K
and
Ren
X
(
1999
),
Recent developments in the research of shape memory alloys
,
Intermetallics
7
,
511
528
.
8.
Shaw
JA
and
Kyriakides
S
(
1995
),
Thermomechanical aspects of NiTi
,
J. Mech. Phys. Solids
43
(
8
),
1243
1281
.
9.
Shaw
JA
and
Kyriakides
S
(
1997
),
On the nucleation and propagation of phase transformation fronts in a NiTi alloy
,
Acta Mater.
45
(
2
),
683
700
.
10.
Shaw
JA
and
Kyriakides
S
(
1998
),
Iniation and propagation of localized deformation in elasto-plastic strips under uniaxial tension
,
Int. J. Plast.
13
(
10
),
837
871
.
11.
Bhattacharya K (1997), Shape Memory Alloys: From Microstructure to Macroscopic Properties, Ch Crystallographic Theory, TransTechPubl, Zu¨rich.
12.
James
RD
and
Hane
KF
(
2000
),
Martensitic transformations and shape-memory materials
,
Acta Mater.
48
(
1
),
197
222
.
13.
Duerig TW, Melton KN, Sto¨ckel D, and Wayman CM (1990), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann.
14.
Bensmann G, Baumgart F, and Hartwig J (1979), Untersuchung der Memorylegierung NiTi und u¨berlegungen zu ihrer Anwendung in der Medizintechnik, Tech Rep 327, Krupp Techn Mitt Krupp, Forsch Ber 327.
15.
Duerig
T
,
Pelton
A
, and
Sto¨ckel
D
(
1999
),
An overview of Nitinol medical applications
,
Mater. Sci. Eng., A
A273–275
,
149
160
.
16.
Goldstein DM and McNamara LJ (eds) (1978), Proc of Nitinol Heat Engine Conf, Silver Spring, NSWC MP 79–441.
17.
Glasauer
FU
and
Mu¨ller
I
(
1996
),
Drum-and-disc-engine with shape memory wires
,
J de Phys IV, Colloque C1, Supple´ment au J de Phys III
6
,
301
307
.
18.
Wilde
K
,
Gardoni
P
, and
Fujino
Y
(
2000
),
Base isolation system with shape memory alloy device for elevated highway bridges
,
Eng. Struct.
22
,
222
229
.
19.
Aizawa
S
,
Kakizawa
T
, and
Higashino
M
(
1998
),
Case studies of smart materials for civil structures
,
Smart Mater. Struct.
7
(
5
),
617
626
.
20.
DesRoches
R
and
Delemont
M
(
2002
),
Seismic retrofit of simply supported bridges using shape memory alloys
,
Eng. Struct.
24
,
325
332
.
21.
Dolce
M
and
Cardone
D
(
2001
),
Mechanical behavior of shape memory alloys for seismic applications, 1: Martensite and austenite NiTi bars subjected to torsion
,
Int. J. Mech. Sci.
43
,
2631
2656
.
22.
Dolce
M
and
Cardone
D
(
2001
),
Mechanical behavior of shape memory alloys for seismic applications 2. austenite NiTi wires subjected to tension
,
Int. J. Mech. Sci.
43
,
2657
2677
.
23.
Seelecke S (2000), Dynamics of an SDOF system with shape memory element, Proc of 7th Ann Int Symp Smart Struct Mat, Newport Beach, CA, 2000, Vol 3992, SPIE.
24.
Seelecke
S
(
2002
),
Modeling the dynamic behavior of shape memory alloys
,
Int. J. Non-Linear Mech.
37
,
1363
1374
.
25.
Birman
V
(
1997
),
Review of mechanics of shape memory alloy structures
,
Appl. Mech. Rev.
50
(
11
),
629
645
.
26.
Jia H, Lalande F, and Rogers CA (1996), Review of constitutive modeling of shape memory alloys, Proc of ASME Aerospace Div JCI Chang, J Coulter, D Brei, D Martinez, W Ng, and PP Friedmann (eds), Vol 52 of AD, ASME 1996.
27.
Brinson
LC
and
Huang
MS
(
1996
),
Simplifications and comparisons of shape memory alloy constitutive models
,
J. Intell. Mater. Syst. Struct.
7
,
108
114
.
28.
Bo Z and Lagoudas DC (1994), Comparison of different thermomechanical models for shape memory alloys, Adaptive Structures and Composite Materials, Analysis and Applications, E Garcia, H Cudney, and A Dasgupta (eds), Vol 45 of AD, ASME.
29.
Huo
Y
and
Mu¨ller
I
(
1993
),
Non-equilibrium thermodynamics of pseudoelasticity
,
Continuum Mech. Thermodyn.
5
,
1
19
.
30.
Achenbach
M
and
Mu¨ller
I
(
1985
),
Simulation of material behavior of alloys with shape memory
,
Arch. Mech.
37
(
6
),
573
585
.
31.
Achenbach
M
,
Atanackovic
T
, and
Mu¨ller
I
(
1986
),
A model for memory alloys in plain strain
,
Int. J. Solids Struct.
22
(
2
),
171
193
.
32.
Achenbach
M
(
1989
),
A model for an alloy with shape memory
,
Int. J. Plast.
5
,
371
395
.
33.
Seelecke S (1999), Adaptive Strukturen mit SMA-Aktoren-Modellbildung und Simulation, Habilitation, TU Berlin.
34.
Seelecke S (2003), A fully coupled thermomechanical model for shape memory alloys, Part I: Theory, J. Mech. Phys. Solids (submitted).
35.
Seelecke S and Kastner O (2003), A fully coupled thermomechanical model for shape memory alloys, Part II: Numerical simulation, J. Mech. Phys. Solids (submitted).
36.
Hollerbach JM, Hunter IW, and Ballantyne J (1992), A Comparative Analysis of Actuator Technologies for Robotics, Vol 2, MIT Press, 299–342.
37.
Bhattacharyya A, Lagoudas DC, Wang Y, and Kinra VK (1994), Thermoelectric cooling of shape memory alloy actuators: Theoretical modeling and experiment, In Active Materials and Smart Structures, Vol 2427, SPIE.
38.
Shahin
AR
,
Meckl
PH
,
Jones
JD
, and
Thrasher
MA
(
1994
),
Enhanced cooling of shape memory alloy wires using semiconductor ‘heat pump’ modules
,
J. Intell. Mater. Syst. Struct.
5
,
95
104
.
39.
Semenyuk V, Seelecke S, Stockholm J, and Musolff A (1998), The use of thermoelectric cooling for shape memory wire temperature control, Europ. Thermoelectric Society Workshop 98, Madrid, Spain, Sept 17–20, Madrid, Spain.
40.
Abadie J, Chaillet N, Lexcellent C, and Bourjault A (1999), Thermoelectric control of shape memory alloy microactuators: Thermal model, Proc of 6th Ann Int Symp Smart Struct Mat, Newport Beach, CA, Vol 3667 of SPIE. SPIE.
41.
Potapov PL (1999), SMA actuators with thermoelastic cooling, Tech Rep, Technische Univ Berlin, FB6-Institut fu¨r Verfahrenstechnik, FG Thermodynamik, D-10587 Berlin.
42.
Abadie
J
,
Chaillet
N
, and
Lexcellent
C
(
2002
),
An integrated shape memory alloy micro-actuator controlled by thermoelectric effect
,
Sens. Actuators A
3251
,
1
7
.
43.
Bauer C, Martin W, and Siegling HF (1998), An adaptive composite structure to control the sonic shock of transport aircraft wings, Proc of 4th European Conf of Smart Structures and Materials, Harrogate, UK, 6–8 July 1998 G Tomlinson and W Bullough (eds), Harrogate, UK.
44.
Breitbach E, Bein T, and Hanselka H (1998), The adaptive spoiler—mechanical aspects of a local spoiler thickening to control the transsonic shock, Proc of 9th Int Conf of Adaptive Structures and Technologies, Cambridge MA, 14–16 Oct 1998, M Atalla and NW Hagood (eds), Cambridge, MA.
45.
Hanselka H, Bein T, Monner HP, and Breitbach EJ (1998), Structure mechanical aspects for the realization of adaptive wing structures, Proc of 4th Europ Conf Smart Struct Mat, Harrogate, UK, 6–8 July, 1998, GR Tomlinson and WA Bullogh (eds), Harrogate, UK.
46.
Kudva JN, Martin CA, Scherer LB, Jardine AP, Sanders BP, Sendeckyj GP, McGowan AR, and Lake RC (1999), Overview of the DARPA/AFRL/NASA smart wing program, Proc of 6th Ann Int Symp Smart Struct Mat, Newport Beach, USA, 1–5 March 1999, Vol 3674, SPIE.
47.
Campanile LF, Carli V, Sachau D, Papenfuß N, and Seelecke S (1999), Extensive geometric adaptability in aerospace structures by means of shape memory alloys, Proc of 38th Conf of Metallurgists, Quebec City, Canada, 1999, Quebec City, Canada.
48.
Mu¨ller I, Musolff A, and Seelecke S (1999), Adaptive wings with shape memory alloys, TMR Project Phase Transition in Crystalline Solids, TU Berlin, http://www.thermodynamik.tu-berlin.de.
49.
Cudney HH and Inman DJ (1998), Smart wing concept using shape memory alloys, Demonstrator Workshop, Presentation at 4th Europ Conf Smart Mat and Struct, 6–8 July 1998, Harrogate, UK.
50.
Chopra I (1998), Status of application of smart structures technology to rotorcraft systems. In Proc 9th Int Conf Adapt Struct Tech, Cambridge MA, 14–16 Oct 1998, M Atalla and NW Hagood (eds), Cambridge, MA.
51.
Giurgiutu V, Chaudry Z, and Rogers C (1994), Active control of helicopter rotor blades with induced strain actuators, AIAA Paper AIAA 94 1765 CP, 288–297.
52.
Vaidyanathan
R
,
Chiel
HJ
, and
Quinn
RD
(
2000
),
A hydrostatic robot for marine applications
,
Rob. Auton. Syst.
30
,
103
113
.
53.
Rediniotis OK and Lagoudas DC (1997), An SMA actuator for aquatic biomimetrics, SPIE 1997 Smart Structures and Materials Conf, San Diego CA, March 1997.
54.
Rediniotis OK, Lagoudas DC, Garner LJ, and Wilson N (1998), Experiments and analysis of an active hydrofoil with SMA actuators, 35th Aerospace Sciences Meeting, Reno, Nevada, AIAA Paper No 98–102.
55.
Rediniotis OK, Lagoudas DC, Mashio T, Garner LJ, and Qidwai MA (1998), Theoretical and experimental investigations of an active hydrofoil with SMA actuators, http://aero.tamu.edu/fluids/publications.
56.
Ho KK, Gill JJ, Carman GP, and Jardine P (1999), Fabrication and characterization of thin film NiTi for use as a microbubble for active flow control, Proc of 6th Ann Int Symp Smart Struct Mat, 1–5 March 1999, Newport Beach, CA, M Wuttig (ed), SPIE.
57.
Miyazaki
S
and
Ishida
A
(
1999
),
Martensitic transformation and shape memory behavior in sputter-deposited TiNi-base thin films
,
Mater. Sci. Eng., A
A273–275
,
106
133
.
58.
Krulevitch
P
,
Lee
AP
,
Ramsey
PB
,
Trevino
JC
,
Hamilton
J
, and
Northrup
MA
(
1996
),
Thin film shape memory alloy microactuators
,
J. Microelectromech. Syst.
5
(
4
),
270
282
.
59.
Benard
WL
,
Kahn
H
,
Heuer
AH
, and
Huff
MA
(
1998
),
Thin-film shape-memory alloy actuated micropumps
,
J. Microelectromech. Syst.
7
(
2
),
245
251
.
60.
Makino
E
,
Mitsuya
T
, and
Shibata
T
(
2001
),
Fabrication of TiNi shape memory micropump
,
Sens. Actuators A
88
,
256
262
.
61.
Xu
D
,
Wang
L
,
Ding
G
,
Zhou
Y
,
Yu
A
, and
Cai
B
(
2001
),
Characteristics and fabrication of NiTi/Si diaphragm micropump
,
Sens. Actuators A
93
,
87
92
.
62.
Kohl
M
,
Skrobanek
KD
, and
Miyazaki
S
(
1999
),
Development of stress-optimized shape memory microvalves
,
Sens. Actuators
72
,
243
250
.
63.
Kohl
M
,
Dittmann
D
,
Quandt
E
, and
Winzek
B
(
2000
),
Thin film shape memory microvalves with adjustable operation temperature
,
Sens. Actuators A
83
,
214
219
.
64.
Johnson AD (2002), http://www.sma-mems.com.
65.
Hesselbach J (1999), Adaptronics and Smart Structures, Ch Shape Memory Actuators. Springer-Verlag, Berlin, Heidelberg, New York.
66.
Pitschellis R (1998), Mechanische Miniaturgreifer mit Formgeda¨chtnisantrieb, No 714 in Fortschr Ber VDI Reihe 8, VDI Verlag Du¨sseldorf.
67.
Kohl
M
and
Skrobanek
KD
(
1998
),
Linear microactuators based on the shape memory effect
,
Sens. Actuators A
70
,
104
111
.
68.
Kohl
M
,
Just
E
,
Pfleging
W
, and
Miyazaki
S
(
2000
),
SMA microgripper with integrated antagonism
,
Sens. Actuators A
83
,
208
213
.
69.
Kohl
M
,
Krevet
B
, and
Just
E
(
2002
),
SMA microgripper system
,
Sens. Actuators A
3197
,
1
7
.
70.
Gill
JJ
,
Chang
DT
,
Momoda
LA
, and
Carman
GP
(
2001
),
Manufacturing issues of thin film NiTi microwrapper
,
Sens. Actuators A
93
,
148
156
.
71.
Bellouard
Y
,
Lehnert
T
,
Bidaux
JE
,
Sidler
T
,
Clavel
R
, and
Gotthardt
R
(
1999
),
Local annealing of complex mechanical devices: A new approach for developing monolithic micro-devices
,
Mater. Sci. Eng., A
A273–275
,
795
798
.
72.
Schleich M and Pfeiffer F (2000), Development of a SMA actuator for application in a robot hand, Robotik 2000, June 29–30, Berlin.
73.
Reynaerts
D
and
van Brussel
H
(
1998
),
Design aspects of shape memory actuators
,
Mechatronics
8
,
635
656
.
74.
Reynaerts
D
,
Peirs
J
, and
van Brussel
H
(
1999
),
Shape memory micro-actuation for a gastro-intestinal intervention system
,
Sens. Actuators A
77
,
157
166
.
75.
Taylor
PM
,
Moser
A
, and
Creed
A
(
1998
),
A sixty-four element tactile display using shape memory alloy wires
,
Displays
18
,
163
168
.
76.
MacGregor R (2002), http://www.nanomuscle.com.
77.
James RD and Wuttig M (1996), Alternative smart materials, In Mathematics and Control in Smart Structures, Vol 2715, SPIE, 1996.
78.
James
RD
,
Tickle
R
, and
Wuttig
M
(
1999
),
Large field-induced strains in ferromagnetic shape memory materials
,
Mater. Sci. Eng., A
A273–275
,
320
325
.
79.
Ullakko K, Yakovenko PG, and Gavriljuk VG (1996), New developments in actuator materials as reflected in magnetically controlled shape memory alloys and high-strength shape memory steels, Mathematics and Control in Smart Structures, Vol 2715, SPIE.
80.
Ullakko
K
,
Huang
JK
,
Kokorin
VV
, and
O’Handley
RC
(
1997
),
Magnetically controlled shape memory effect in Ni2MnGa intermetallics
,
Scr. Mater.
36
(
10
),
1133
1138
.
81.
Tanaka
K
and
Nagaki
S
(
1982
),
A thermomechanical description of materials with internal variables in the process of phase transition
,
Ingenieur Archiv Arch Appl Mech
51
,
287
299
.
82.
Tanaka
K
(
1986
),
A thermomechanical sketch of shape memory effect: One-dimensional tensile behavior
,
Res. Mech.
18
,
251
263
.
83.
Tanaka
K
,
Kobayashi
S
, and
Sato
Y
(
1986
),
Thermomechanics of transformation, pseudoelasticity and shape memory effect in alloys
,
Int. J. Plast.
2
,
59
72
.
84.
Liang
C
and
Rogers
CA
(
1990
),
One-dimensional thermomechanical constitutive relations for shape memory materials
,
J. Intell. Mater. Syst. Struct.
1
,
207
234
.
85.
Brinson
LC
(
1993
),
One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable
,
J. Intell. Mater. Syst. Struct.
4
,
229
242
.
86.
Bekker
A
and
Brinson
LC
(
1997
),
Temperature-induced phase transformation in a shape memory alloy: Phase diagram based kinetics approach
,
J. Mech. Phys. Solids
45
(
6
),
949
988
.
87.
Boyd
JG
and
Lagoudas
DC
(
1994
),
Thermomechanical response of shape memory composites
,
J. Intell. Mater. Syst. Struct.
5
,
333
346
.
88.
Lu
ZK
and
Weng
GJ
(
1997
),
Martensitic transformation and stress-strain relations of shape-memory alloys
,
J. Mech. Phys. Solids
45
(
11/12
),
1905
1928
.
89.
Lu
ZK
and
Weng
GJ
(
1998
),
A self-consistent model for the stress-strain behavior of shape-memory alloy polycrystals
,
Acta Mater.
46
(
15
),
5423
5433
.
90.
Huang
M
and
Brinson
LC
(
1998
),
A multivariant model for single crystal shape memory alloy behavior
,
J. Mech. Phys. Solids
46
(
8
),
1379
1409
.
91.
Gao
X
,
Huang
M
, and
Brinson
LC
(
2000
),
A multivariant micromechanical model for SMAs, Part 1: Crystallographic issues for single crystal model
,
Int. J. Plast.
16
,
1345
1369
.
92.
Huang
M
,
Gao
X
, and
Brinson
LC
(
2000
),
A multivariant micromechanical model for SMAs, Part 2: Polycrystal model
,
Int. J. Plast.
16
,
1371
1399
.
93.
Bo
Z
and
Lagoudas
DC
(
1999
),
Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part 1: Theoretical derivations
,
Int. J. Eng. Sci.
37
,
1089
1140
.
94.
Bo
Z
and
Lagoudas
DC
(
1999
),
Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part II: Material characterization and experimental results for a stable transformation cycle
,
Int. J. Eng. Sci.
37
,
1141
1173
.
95.
Bo
Z
and
Lagoudas
DC
(
1999
),
Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: Evolution of plastic strains and two-way shape memory effect
,
Int. J. Eng. Sci.
37
,
1175
1203
.
96.
Bo
Z
and
Lagoudas
DC
(
1999
),
Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: Modeling of minor hysteresis loops
,
Int. J. Eng. Sci.
37
,
1205
1249
.
97.
Goo
BC
and
Lexcellent
C
(
1998
),
Micromechanics-based modeling of two-way shape memory effect of a single crystalline shape-memory alloy
,
Acta Mater.
45
(
2
),
727
737
.
98.
Vivet
A
and
Lexcellent
C
(
1997
),
Micromechanical modeling for tension-compression pseudoelastic behavior of AuCd single crystals
,
Eur. Phys. J.: Appl. Phys.
4
,
125
132
.
99.
Ivshin
Y
and
Pence
TJ
(
1994
),
A constitutive model for hysteretic phase transition behavior
,
Int. J. Eng. Sci.
32
,
681
704
.
100.
Ivshin
Y
and
Pence
TJ
(
1994
),
A thermomechanical model for a one variant shape memory material
,
J. Intell. Mater. Syst. Struct.
5
,
455
473
.
101.
Mu¨ller
I
and
Wilmanski
K
(
1980
),
A model for a pseudoelastic body
,
Nuovo Cimento Soc. Ital. Fis., B
57B
,
283
318
.
102.
Achenbach
M
and
Mu¨ller
I
(
1982
),
A model for shape memory
,
J de Phys Colloque C4 supplement au no 12 J. de Phys. III
12
,
163
167
.
103.
Govindjee
S
and
Hall
GJ
(
2000
),
A computational model for shape memory alloys
,
Int. J. Solids Struct.
37
,
735
760
.
104.
Govindjee S and Hall GJ (1999), Computational aspects of solid-solid phase transformation modeling with a Gibbs function. Proc of 6th Ann Int Symp Smart Struct Mat, 1–5 March 1999, Newport Beach, CA, SPIE.
105.
Hall GJ and Govindjee S (1999), A model and numerical framework for the simulation of solid-solid phase transformations, Tech Rep UCB/SEMM-1999/11, Dept of Civil and Env Eng, Univ of California, Berkley.
106.
Fu
S
,
Huo
Y
, and
Mu¨ller
I
(
1993
),
Thermodynamics of pseudoelasticity An analytical approach
,
Acta Mech.
99
,
1
19
.
107.
Glasauer FU (1996), Thermodynamische Untersuchungen and Geda¨chtnislegierungen, PhD Thesis, TU Berlin.
108.
Madill DR and Wang DWL (1996), L2-stability of a shape memory alloy position control system, Proc of 33rd IEEE Conf on Decision and Control, IEEE Computer Society Press, Los Alamitos, CA.
109.
Preisach
F
(
1935
),
U¨ber die magnetische Nachwirkung
,
Z Phys
94
,
277
302
.
110.
Krasnosel’skii M and Prokrovskii A (1989), Systems with Hysteresis, Springer-Verlag, Berlin.
111.
Visintin A (1994), Differential Models of Hysteresis, Applied Mathematical Sciences, Springer Verlag, Berlin,
112.
Brokate M and Sprekels J (1996), Hysteresis and Phase Transitions, Springer Verlag, New York.
113.
Huo
Y
(
1989
),
A mathematical model for the hysteresis in shape memory alloys
,
Continuum Mech. Thermodyn.
1
,
283
303
.
114.
Ortin
J
(
1992
),
Preisach modeling of hysteresis for a pseudoelastic cu-zn-al single crystal
,
J. Appl. Phys.
71
,
1454
1461
.
115.
Hughes DC and Wen JT (1994), Preisach modeling and compensation for smart material hysteresis, Active Materials and Smart Structures, Vol 2427, SPIE.
116.
Hughes DC and Wen JT (1996), Preisach modeling of piezoceramic and shape memory alloy hysteresis, Mathematics and Control in Smart Structures, Vol 2715, SPIE.
117.
Gorbet RB (1997), Control of hysteresis systems with preisach representations, PhD Thesis, Univ of Waterloo, Waterloo, Canada.
118.
Gorbet RB, Morris KA, and Wang DWL (1997), Stability of control for the Preisach hysteresis model Proc of 1997 IEEE Int Conf on Robotics and Automation, Vol 1, Albuquerque, NM.
119.
Gorbet
RB
and
Wang
DWL
(
1998
),
A dissipativity approach to stability of a shape memory alloy position control system
,
IEEE Tans Contr Syst Tech
6
(
4
),
554
562
.
120.
Seelecke S, da Silva E, and So¨ffker D (1998), Simulation of feedback control for SMA actuators, Proc 9th Int Conf Adapt Struct Tech, Cambridge, MA, 14-16 Oct 1998, MJ Atalla and NW Hagood (eds), Cambridge MA, 14–16 Oct, 238–246.
121.
da Silva EP (2000), Zur Kalorimetrie von Geda¨chtnislegierungen und zu ihrer Anwendung als elektrisch aktivierte Aktuatoren, PhD Thesis, TU Berlin, Berlin, Germany.
122.
Hairer E and Wanner G (1991), Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer Series in Computational Math, Springer-Verlag.
123.
Grant
D
and
Hayward
V
(
1997
),
Variable structure control of shape memory alloy actuators
,
IEEE Control Syst. Mag.
17
(
3
),
80
88
.
124.
Cruz-Hernandez JM and Hayward V (1998), An approach to reduction of hysteresis in smart materials, Proc of 1998 IEEE, Int Conf on Robotics and Automation, Leuven, Beligium.
125.
van der Wijst
MWM
,
Schreurs
PJG
, and
Veldpaus
FE
(
1997
),
Application of computed phase transformation power to control shape memory alloy actuators
,
Smart Mater. Struct.
6
(
2
),
190
198
.
126.
Webb GV and Lagoudas DC (1999), Control of SMA actuators under dynamic enviroments, Proc 6th Ann Int Symp Smart Struct Mat, Newport Beach, CA, 1–5 March 1999, Vol. 3667, SPIE.
127.
Webb
GV
,
Lagoudas
DC
, and
Kurdila
AJ
(
1998
),
Hysteresis modeling of SMA actuators for control applications
,
J. Intell. Mater. Syst. Struct.
9
,
432
448
.
128.
Webb
GV
,
Lagoudas
DC
, and
Kurdila
AJ
(
2000
), Adaptive hysteresis compensation for SMA actuators with stress-induced variations in hysteresis,
J. Intell. Mater. Syst. Struct.
10
(
11
),
845
854
.
129.
Webb GV, Lagoudas DC, and Kulkarni M (1999), Adaptive shape control for an SMA-actuated aerofoil rib structure, Proc of IMECE ’99 ASME Int Mech Eng Congress and Exposition, ASME.
130.
Banks
HT
,
Kurdila
A
, and
Webb
G
(
1997
),
Identification of hysteretic control influence operators representing smart actuators, Part I: Formulation
,
Math Probl Eng
3
,
287
328
.
131.
Banks
HT
,
Kurdila
A
, and
Webb
G
(
1997
),
Identification of hysteretic control influence operators representing smart actuators, Part II: Convergent approximations
,
J. Intell. Mater. Syst. Struct.
8
,
536
550
.
132.
Brinson
LC
,
Huang
MS
,
Boller
C
, and
Brand
W
(
1997
),
Analysis of controlled beam deflections using SMA wires
,
J. Intell. Mater. Syst. Struct.
8
,
12
25
.
133.
Shu
SG
,
Lagoudas
DC
,
Hughes
D
, and
Wen
JT
(
1997
),
Modeling of flexible beam actuated by shape memory alloy wires
,
Smart Mater. Struct.
6
(
3
),
265
277
.
134.
Lagoudas
DC
and
Shu
SG
(
1999
),
Residual deformation of active structures with SMA actuators
,
Int. J. Mech. Sci.
41
,
595
619
.
135.
Perreux
D
and
Lexcellent
C
(
1999
),
Theoretical and experimental study of a smart hinge-beam based on shape memory alloy wire actuators
,
J. Intell. & Robotic Syst.
25
,
167
182
.
136.
Seelecke S (1997), Control of beam structures by shape memory wires, 2nd Sci Conf Smart Mechanical Systems: Adaptronics, March 1997, Otto-von-Guericke Univ, Magdeburg.
137.
Seelecke S and Bu¨skens C (1997), Optimal control of beam structures by shape memory wires, OPTI 97, Computer Aided Optimum Design of Structures, Rome, Italy, Sept 8–10, 1997 S Hernandez and CA Brebbia (eds), Comp Mech Press, Rome, Italy.
138.
Bu¨skens C (1996), NUDOCCCS, User’s Manual. Universita¨t Mu¨nster.
139.
Bu¨skens C and Maurer H (1996), Sensitivity analysis and real-time control of nonlinear optimal control systems via nonlinear programming methods, Proc 12th Conf Calculus of Variations, Optimal Control and Applications, Trassenheide, Germany, Sept 1996, Trassenheide, Germany.
140.
Bu¨skens C (1997), Real-time control of an industrial robot using nonlinear programming methods, Proc 4th IFAC Workshop on Algorithms and Architectures for Real-Time Control, Vilamoura, April 1997, Portugal.
141.
Bu¨skens C (2002), Real-Time Optimization and Real-Time Optimal Control of Parameter-Pertutbed Problems. (in German), Habilitation, Univ of Bayreuth.
142.
Papenfuß N and Seelecke S (1999), Simulation and control of SMA actuators, Proc 6th Ann Int Symp Smart Struct Mat, 1–5 March, Vol 3667, SPIE, Newport Beach, CA.
143.
Gro¨tschel M, Krumke SO, and Rambau J (eds) (2001), Online Optimization of Large Scale Systems, Springer.
144.
Brinson
LC
and
Lammering
R
(
1993
),
Finite element analysis of the behavior of shape memory alloys and their applications
,
Int. J. Solids Struct.
30
,
3261
3280
.
145.
Rediniotis OK, Lagoudas DC, Aranki T, and Wilson N (1997), Smart flap assisted control surface (SFACS), http://barracuda.tamu.edu, Research Project at Texas A&M Univ.
146.
Auricchio F and Taylor RL (1996), Shape memory alloy superelastic behavior: 3d finite-element simulations, 3rd European Conf on Smart Structures and Materials, Lyon, France, 3–5 June, 1996, Vol 2779 of SPIE.
147.
Auricchio
F
and
Taylor
RL
(
1997
),
Shape-memory alloys: Modelling and numerical simulations of the finite-strain superelastic behavior
,
Comput. Methods Appl. Mech. Eng.
143
,
175
194
.
148.
Auricchio
F
and
Sacco
E
(
1999
),
A temperature-dependent beam for shape-memory alloys: Constitutive modelling, finite-element implementation and numerical simulations
,
Comput. Methods Appl. Mech. Eng.
174
,
171
190
.
149.
Trochu
F
and
Qian
YY
(
1997
),
Nonlinear finite element simulation of superelastic shape memory alloy parts
,
Comput. Struct.
62
(
5
),
799
810
.
150.
Taylor RL (1997), pcfeap, version 2.04, http://www.ce.berkley.edu/rlt/.
151.
Seelecke
S
and
PapenfuPapenfuß
N
(
2000
),
A finite element formulation for SMA actuators
,
Appl. Mech. Eng.
5
(
1
),
241
250
.
152.
Zienkiewicz OC and Taylor RL (1989), The Finite Element Method, Volume 1: Basic Formulations and Linear Problems 4th Edition, McGraw-Hill, London.
153.
Zienkiewicz OC and Taylor RL (1991), The Finite Element Method, Volume 2: Solid and Fluid Mechanics, Dynamics and Nonlinearity, 4th Edition, McGraw-Hill, London.
154.
Papenfuss N and Seelecke S (1998), FE-simulation adaptiver strukturen mit formgeda¨chtnisaktoren, Proc 16th CADFEM User’s Meeting, Bad Neuenahr, Germany, Oct 7–9, 1998, Bad Neuenahr, Germany.
155.
Papenfuß N (1999), Finite-elemente-simulation adaptiver strukturen mit formgeda¨chtnisaktoren, Master’s Thesis, TU Berlin.
You do not currently have access to this content.