Abstract

Fracture, akin to light, electricity, and magnetism, is an ever-present phenomenon. Counteracting fracture through effective design techniques has emerged as a distinct technology, gaining momentum alongside the rapid progress in additive manufacturing and computational design methodologies. We present advancements in fracture resistance of architected dual-material structures through simulation, optimization, and experimentation. Our approach achieves a remarkable 120-fold enhancement in toughness modulus, surpassing constituent materials in brittle fracture. We analyze the interplay between design, material selection, temperature, and fracture behavior, enabling robust architectures. This work contributes to fracture-resistant design and has promising engineering implications.

References

1.
Griffith
,
A. A.
,
1921
, “
VI. The Phenomena of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. Lond. Ser. A
,
221
(
582–593
), pp.
163
198
.
2.
Irwin
,
G. R.
,
1957
, “
Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate
,”
ASME J. Appl. Mech.
,
24
(3), pp.
361
364
.
3.
Barenblatt
,
G. I.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
, pp.
55
129
.
4.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
.
5.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,
1973
,
The Stress Analysis of Cracks
, Vol. 34,
Del Research Corporation
,
Hellertown, PA
.
6.
Inglis
,
C. E.
,
1913
, “
Stresses in a Plate Due to the Presence of Cracks and Sharp Corners
,”
Trans. Inst. Nav. Archit.
,
55
, pp.
219
241
.
7.
Ritchie
,
R. O.
,
2011
, “
The Conflicts Between Strength and Toughness
,”
Nat. Mater.
,
10
(
11
), pp.
817
822
.
8.
Wegst
,
U. G.
,
Bai
,
H.
,
Saiz
,
E.
,
Tomsia
,
A. P.
, and
Ritchie
,
R. O.
,
2015
, “
Bioinspired Structural Materials
,”
Nat. Mater.
,
14
(
1
), pp.
23
36
.
9.
Gim
,
J.
,
Schnitzer
,
N.
,
Otter
,
L. M.
,
Cui
,
Y.
,
Motreuil
,
S.
,
Marin
,
F.
,
Wolf
,
S. E.
,
Jacob
,
D. E.
,
Misra
,
A.
, and
Hovden
,
R.
,
2019
, “
Nanoscale Deformation Mechanics Reveal Resilience in Nacre of Pinna Nobilis Shell
,”
Nat. Commun.
,
10
(
1
), p.
4822
.
10.
Gao
,
H.
,
2006
, “
Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of Bone and Bone-Like Materials
,”
Int. J. Fract.
,
138
(
1–4
), pp.
101
137
.
11.
Dimas
,
L. S.
,
Bratzel
,
G. H.
,
Eylon
,
I.
, and
Buehler
,
M. J.
,
2013
, “
Tough Composites Inspired by Mineralized Natural Materials: Computation, 3d Printing, and Testing
,”
Adv. Funct. Mater.
,
23
(
36
), pp.
4629
4638
.
12.
Gu
,
G. X.
,
Dimas
,
L.
,
Qin
,
Z.
, and
Buehler
,
M. J.
,
2016
, “
Optimization of Composite Fracture Properties: Method, Validation, and Applications
,”
J. Appl. Mech.
,
83
(
7
), p.
071006
.
13.
San
,
B.
, and
Waisman
,
H.
,
2017
, “
Optimization of Carbon Black Polymer Composite Microstructure for Rupture Resistance
,”
J. Appl. Mech.
,
84
(
2
), p.
021005
.
14.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods, and Applications
,
Springer Science & Business Media
,
Berlin, Heidelberg, Germany
.
15.
Xia
,
L.
,
Da
,
D.
, and
Yvonnet
,
J.
,
2018
, “
Topology Optimization for Maximizing the Fracture Resistance of Quasi-brittle Composites
,”
Comput. Methods Appl. Mech. Eng.
,
332
, pp.
234
254
.
16.
Da
,
D.
,
Yvonnet
,
J.
,
Xia
,
L.
, and
Li
,
G.
,
2018
, “
Topology Optimization of Particle-Matrix Composites for Optimal Fracture Resistance Taking Into Account Interfacial Damage
,”
Int. J. Numer. Methods Eng.
,
115
(
5
), pp.
604
626
.
17.
Francfort
,
G. A.
, and
Marigo
,
J.-J.
,
1998
, “
Revisiting Brittle Fracture as an Energy Minimization Problem
,”
J. Mech. Phys. Solids
,
46
(
8
), pp.
1319
1342
.
18.
Da
,
D.
, and
Qian
,
X.
,
2020
, “
Fracture Resistance Design Through Biomimicry and Topology Optimization
,”
Extreme Mech. Lett.
,
40
, p.
100890
.
19.
Da
,
D.
,
2022
, “
Model Reduction on 3d Fracture Resistance Design
,”
J. Comput. Phys.
,
463
, p.
111274
.
20.
Clarke
,
D. R.
,
1992
, “
Interpenetrating Phase Composites
,”
J. Am. Ceram. Soc.
,
75
(
4
), pp.
739
758
.
21.
Da
,
D.
,
2024
, “
Structural Design Against Brittle Fracture: Optimizing Energy Release Rate and Experiment
,”
Comput. Methods Appl. Mech. Eng.
,
425
, p.
116935
.
22.
Yvonnet
,
J.
, and
Da
,
D.
,
2024
, “
Topology Optimization to Fracture Resistance: A Review and Recent Developments
,”
Arch. Comput. Methods Eng.
,
31
(
4
), pp.
2295
2315
.
23.
Da
,
D.
, and
Chen
,
W.
,
2023
, “
Simple Strategy Toward Tailoring Fracture Properties of Brittle Architected Materials
,”
Int. J. Numer. Methods Eng.
,
124
(
2
), pp.
334
357
.
24.
Sigmund
,
O.
,
2007
, “
Morphology-Based Black and White Filters for Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
33
(
4–5
), pp.
401
424
.
25.
Qian
,
X.
,
2017
, “
Undercut and Overhang Angle Control in Topology Optimization: A Density Gradient Based Integral Approach
,”
Int. J. Numer. Methods Eng.
,
111
(
3
), pp.
247
272
.
26.
Wang
,
C.
, and
Qian
,
X.
,
2018
, “
Heaviside Projection-Based Aggregation in Stress-Constrained Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
115
(
7
), pp.
849
871
.
27.
Bourdin
,
B.
,
Francfort
,
G. A.
, and
Marigo
,
J.-J.
,
2000
, “
Numerical Experiments in Revisited Brittle Fracture
,”
J. Mech. Phys. Solids
,
48
(
4
), pp.
797
826
.
28.
Bourdin
,
B.
,
Francfort
,
G. A.
, and
Marigo
,
J.-J.
,
2008
, “
The Variational Approach to Fracture
,”
J. Elast.
,
91
(
1–3
), pp.
5
148
.
29.
Amor
,
H.
,
Marigo
,
J.-J.
, and
Maurini
,
C.
,
2009
, “
Regularized Formulation of the Variational Brittle Fracture With Unilateral Contact: Numerical Experiments
,”
J. Mech. Phys. Solids
,
57
(
8
), pp.
1209
1229
.
30.
Miehe
,
C.
,
Welschinger
,
F.
, and
Hofacker
,
M.
,
2010
, “
Thermodynamically Consistent Phase-Field Models of Fracture: Variational Principles and Multi-field Fe Implementations
,”
Int. J. Numer. Methods Eng.
,
83
(
10
), pp.
1273
1311
.
31.
Miehe
,
C.
,
Hofacker
,
M.
, and
Welschinger
,
F.
,
2010
, “
A Phase Field Model for Rate-Independent Crack Propagation: Robust Algorithmic Implementation Based on Operator Splits
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
45–48
), pp.
2765
2778
.
32.
Ambati
,
M.
,
Gerasimov
,
T.
, and
De Lorenzis
,
L.
,
2015
, “
A Review on Phase-Field Models of Brittle Fracture and a New Fast Hybrid Formulation
,”
Comput. Mech.
,
55
(
2
), pp.
383
405
.
33.
Nguyen
,
T. T.
,
Yvonnet
,
J.
,
Bornert
,
M.
, and
Chateau
,
C.
,
2016
, “
Initiation and Propagation of Complex 3d Networks of Cracks in Heterogeneous Quasi-brittle Materials: Direct Comparison Between In Situ Testing-MicroCT Experiments and Phase Field Simulations
,”
J. Mech. Phys. Solids
,
95
, pp.
320
350
.
You do not currently have access to this content.