Abstract

A morphing quadrotor unmanned aerial vehicle (QUAV) possesses the remarkable ability to alter its shape, enabling it to navigate through gaps smaller than its wingspan. However, these deformations result in changes to the system's center of gravity and moment of inertia, necessitating real-time computation of each state's variations. To address this challenge, we propose a dynamic modeling approach based on the Udwadia−Kalaba (U-K) method. The morphing QUAV is divided into three separate subsystems, with the dynamic modeling for each subsystem conducted independently. Subsequently, the QUAV's deformation states and inherent structure are introduced in the form of constraints, and the constrained forces are derived using the U-K equation. By combining these analytical solutions, the model of the QUAV under continuous deformation is obtained. This approach effectively simplifies the modeling computations caused by changes in the system's center of gravity and moment of inertia during deformation. A control approach is proposed to achieve attitude stabilization and altitude control for the morphing QUAV. Ultimately, the stable motion of the morphing QUAV is validated through numerical simulations.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Özel
,
C.
,
Özbek
,
E.
, and
Ekici
,
S.
,
2020
, “
A Review on Applications and Effects of Morphing Wing Technology on UAVs
,”
Int. J. Aviat. Sci. Technol.
,
01
(
01
), pp.
30
40
.
2.
Falanga
,
D.
,
Kleber
,
K.
,
Mintchev
,
S.
,
Floreano
,
D.
, and
Scaramuzza
,
D.
,
2018
, “
The Foldable Drone: A Morphing Quadrotor That Can Squeeze and Fly
,”
IEEE Robot. Autom. Lett.
,
4
(
2
), pp.
209
216
.
3.
Hu
,
D.
,
Pei
,
Z.
,
Shi
,
J.
, and
Tang
,
Z.
,
2021
, “
Design, Modeling and Control of a Novel Morphing Quadrotor
,”
IEEE Robot. Autom. Lett.
,
6
(
4
), pp.
8013
8020
.
4.
Zhao
,
N.
,
Luo
,
Y.
,
Deng
,
H.
, and
Shen
,
Y.
,
2018
, “
The Deformable Quad-Rotor: Mechanism Design, Kinematics, and Dynamics Effects Investigation
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
045002
.
5.
Bai
,
Y.
, and
Gururajan
,
S.
,
2019
, “
Evaluation of a Baseline Controller for Autonomous “Figure-8” Flights of a Morphing Geometry Quadcopter: Flight Performance
,”
Drones
,
3
(
3
), p.
70
.
6.
Derrouaoui
,
S. H.
,
Bouzid
,
Y.
, and
Guiatni
,
M.
,
2021
, “
Nonlinear Robust Control of a New Reconfigurable Unmanned Aerial Vehicle
,”
Robotics
,
10
(
2
), p.
76
.
7.
Riviere
,
V.
,
Manecy
,
A.
, and
Viollet
,
S.
,
2018
, “
Agile Robotic Fliers: A Morphing-Based Approach
,”
Soft Rob.
,
5
(
5
), pp.
541
553
.
8.
Kose
,
O.
, and
Oktay
,
T.
,
2020
, “
Simultaneous Quadrotor Autopilot System and Collective Morphing System Design
,”
Aircr. Eng. Aerosp. Technol.
,
92
(
7
), pp.
1093
1100
.
9.
Fonseca
,
L. M.
, and
Savi
,
M. A.
,
2020
, “
Nonlinear Dynamics of an Autonomous Robot with Deformable Origami Wheels
,”
Int. J. Non Linear Mech.
,
125
, p.
103533
.
10.
Xu
,
F.
,
Wang
,
H.
,
Au
,
K. W. S.
,
Chen
,
W.
, and
Miao
,
Y.
,
2018
, “
Underwater Dynamic Modeling for a Cable-Driven Soft Robot Arm
,”
IEEE/ASME Trans. Mechatron.
,
23
(
6
), pp.
2726
2738
.
11.
Wei
,
C.
,
Wang
,
R.
,
Zheng
,
W.
,
Pu
,
J.
,
2021
, “
Equivalent Dynamic Modeling of Flexible Morphing Aircraft
,”
Sci. Prog.
,
104
(
2
), pp.
1
15
.
12.
Avant
,
T.
,
Lee
,
U.
,
Katona
,
B.
, and
Morgansen
,
K.
,
2018
, “
Dynamics, Hover Configurations, and Rotor Failure Restabilization of a Morphing Quadrotor
,”
American Control Conference (ACC)
,
Milwaukee, WI
,
June 27–29
, pp.
4855
4862
.
13.
Udwadia
,
F. E.
,
2003
, “
A New Perspective on the Tracking Control of Nonlinear Structural and Mechanical Systems
,”
Proc. R. Soc. A
,
459
(
2035
), pp.
1783
1800
.
14.
Udwadia
,
F. E.
,
2023
, “
The General Gauss Principle of Least Constraint
,”
ASME J. Appl. Mech.
,
90
(
11
), p.
111006
.
15.
Pennestrì
,
E.
,
Valentini
,
P. P.
, and
de Falco
,
D.
,
2010
, “
An Application of the Udwadia–Kalaba Dynamic Formulation to Flexible Multibody Systems
,”
J. Franklin Inst.
,
347
(
1
), pp.
173
194
.
16.
Zhang
,
X.
,
Chen
,
Z.
,
Xu
,
S.
,
Liu
,
P. X.
, and
Yang
,
X.
,
2019
, “
Udwadia-Kalaba Approach for Three Link Manipulator Dynamics with Motion Constraints
,”
IEEE Access
,
7
, pp.
49240
49250
.
17.
Dong
,
F.
,
Liu
,
Z.
,
Zhao
,
X.
,
Han
,
J.
, and
Huang
,
X.
,
2024
, “
Cooperative Position and Orientation Modeling for Dual-Robot Mirror Milling Under Multi-Source Constraints
,”
Int. J. Adv. Manuf. Technol.
,
131
(
1
), pp.
315
328
.
18.
Wanichanon
,
T.
,
Cho
,
H.
, and
Udwadia
,
F. E.
,
2015
, “
An Approach to the Dynamics and Control of Uncertain Multi-Body Systems
,”
Procedia IUTAM
,
13
, pp.
43
52
.
19.
Pappalardo
,
C. M.
, and
Guida
,
D.
,
2019
, “
On the Dynamics and Control of Underactuated Nonholonomic Mechanical Systems and Applications to Mobile Robots
,”
Arch. Appl. Mech.
,
89
(
4
), pp.
669
698
.
20.
Chen
,
Y. H.
,
1999
, “
Equations of Motion of Constrained Mechanical Systems: Given Force Depends on Constraint Force
,”
Mechatronics
,
9
(
4
), pp.
411
428
.
21.
Udwadia
,
F. E.
, and
Wanichanon
,
T.
,
2014
, “
Control of Uncertain Nonlinear Multibody Mechanical Systems
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041020
.
22.
Udwadia
,
F. E.
,
2008
, “
Optimal Tracking Control of Nonlinear Dynamical Systems
,”
Proc. R. Soc. A
,
464
(
2097
), pp.
2341
2363
.
23.
Cho
,
H.
,
Wanichanon
,
T.
, and
Udwadia
,
F. E.
,
2018
, “
Continuous Sliding Mode Controllers for Multi-Input Multi-Output Systems
,”
Nonlinear Dyn.
,
94
(
4
), pp.
2727
2747
.
24.
Tuna
,
T.
,
Ovur
,
S. E.
,
Gokbel
,
E.
, and
Kumbasar
,
T.
,
2020
, “
Design and Development of FOLLY: A Self-Foldable and Self-Deployable Quadcopter
,”
Aerosp. Sci. Technol.
,
100
, p.
105807
.
25.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
,
2001
, “
Explicit Equations of Motion for Mechanical Systems with Nonideal Constraints
,”
ASME J. Appl. Mech.
,
68
(
3
), pp.
462
467
.
26.
Yang
,
S.
,
Han
,
J.
,
Xia
,
L.
, and
Chen
,
Y.-H.
,
2020
, “
Adaptive Robust Servo Constraint Tracking Control for an Underactuated Quadrotor UAV with Mismatched Uncertainties
,”
ISA Trans.
,
106
, pp.
12
30
.
27.
Sun
,
H.
,
Yang
,
L.
,
Chen
,
Y. H.
, and
Zhao
,
H.
,
2020
, “
Constraint-based Control Design for Uncertain Underactuated Mechanical System: Leakage-Type Adaptation Mechanism
,”
IEEE Trans. Syst. Man Cybernet.: Syst.
,
51
(
12
), pp.
7663
7674
.
You do not currently have access to this content.