Abstract

This paper presents comprehensive numerical studies on the instability behavior of metamaterial-based cylindrical shells (meta-shells) under axial compression. The cylindrical meta-shells are comprised of lattice-like metamaterial unit cells, including house unit cells and their variants, cuboid braced, octet truss, and octahedron. Their buckling and post-buckling behavior, effects of dimensional variations, structural mass efficiency in carrying axial compression, and the influences from damaged units are studied in this work. The results show that cylindrical meta-shells can exhibit benign or multistable post-buckling behavior rather than catastrophic unstable post-buckling commonly seen for conventional cylindrical shells with continuous surfaces. This work finds that the critical buckling loads scale with the meta-shell dimensions following a quadratic relation. However, the meta-shells’ structural mass efficiencies in carrying axial load do not change or slightly increase as their sizes proportionally increase. The study on the effects of defects shows that the critical buckling loads linearly decrease with respect to the mass of total damaged units.

References

1.
Du Peloux
,
L.
,
Baverel
,
O.
,
Caron
,
J. F.
, and
Tayeb
,
F.
,
2013
, “
From Shape to Shell: A Design Tool to Materialize Freeform Shapes Using Gridshell Structures
,”
Design Modelling Symposium
,
Berlin, Germany
,
Sept. 30–Oct. 2
2.
Douthe
,
C.
,
Caron
,
J. F.
, and
Baverel
,
O.
,
2010
, “
Gridshell Structures in Glass Fibre Reinforced Polymers
,”
Constr. Build. Mater.
,
24
(
9
), pp.
1580
1589
.
3.
Dyvik
,
S. H.
,
Manum
,
B.
, and
Rønnquist
,
A.
,
2021
, “
Gridshells in Recent Research—A Systematic Mapping Study
,”
Appl. Sci.
,
11
(
24
), p.
11731
.
4.
Ghiyasinasab
,
M.
,
Lehoux
,
N.
, and
Ménard
,
S.
,
2017
, “
Production Phases and Market for Timber Gridshell Structures: A State-of-the-Art Review
,”
BioResources
,
12
(
4
), pp.
9538
9555
.
5.
Miura
,
K.
, and
Pellegrino
,
S.
,
2020
, “Space Frames,”
Forms and Concepts for Lightweight Structures
,
Cambridge University Press
,
Cambridge, UK
, pp.
28
58
.
6.
Bhundiya
,
H. G.
,
Royer
,
F.
, and
Cordero
,
Z.
,
2022
, “
Engineering Framework for Assessing Materials and Processes for In-Space Manufacturing
,”
J. Mater. Eng. Perform.
,
31
(
8
), pp.
6045
6059
.
7.
Zocca
,
A.
,
Wilbig
,
J.
,
Waske
,
A.
,
Günster
,
J.
,
Widjaja
,
M. P.
,
Neumann
,
C.
,
Clozel
,
M.
, et al
,
2022
, “
Challenges in the Technology Development for Additive Manufacturing in Space
,”
Chin. J. Mech. Eng.
,
1
(
1
), p.
100018
.
8.
Hoffmann
,
M.
, and
Elwany
,
A.
,
2023
, “
In-Space Additive Manufacturing: A Review
,”
ASME J. Manuf. Sci. Eng.
,
145
(
2
), p.
020801
.
9.
Gioncu
,
V.
,
1995
, “
Buckling of Reticulated Shells: State-of-the-Art
,”
Int. J. Space Struct.
,
10
(
1
), pp.
1
46
.
10.
Baek
,
C.
,
Sageman-Furnas
,
A. O.
,
Jawed
,
M. K.
, and
Reis
,
P. M.
,
2018
, “
Form Finding in Elastic Gridshells
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
1
), pp.
75
80
.
11.
Poincloux
,
S.
,
Vallat
,
C.
,
Chen
,
T.
,
Sano
,
T. G.
, and
Reis
,
P. M.
,
2023
, “
Indentation and Stability of Woven Domes
,”
Extreme Mech. Lett.
,
59
, p.
101968
.
12.
Kato
,
S.
,
Abedi
,
K.
,
Chen
,
P. S.
,
Fan
,
F.
,
Fujimoto
,
M.
,
Gantes
,
C.
,
Ishikawa
,
K.
, et al
,
2014
, “Guide to Buckling Load Evaluation of Metal Reticulated Roof Structures,”
International Association for Shell and Spatial Structures
,
Madrid, Spain
.
13.
Forman
,
S. E.
, and
Hutchinson
,
J. W.
,
1970
, “
Buckling of Reticulated Shell Structures
,”
Int. J. Solids Struct.
,
6
(
7
), pp.
909
932
.
14.
Malek
,
S.
,
Wierzbicki
,
T.
, and
Ochsendorf
,
J.
,
2014
, “
Buckling of Spherical Cap Gridshells: A Numerical and Analytical Study Revisiting the Concept of the Equivalent Continuum
,”
Eng. Struct.
,
75
, pp.
288
298
.
15.
Bhundiya
,
H. G.
,
Royer
,
F.
, and
Cordero
,
Z.
,
2022
, “
Compressive Behavior of Isogrid Columns Fabricated With Bend-Forming
.”
AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum
,
San Diego, CA
,
Jan. 3–7
, pp.
1
13
.
16.
Malek
,
S. R.
,
2012
, “
The Effect of Geometry and Topology on the Mechanics of Grid Shells
,”
PhD diss.
,
Massachusetts Institute of Technology
.
17.
Meza
,
L. R.
,
Phlipot
,
G. P.
,
Portela
,
C. M.
,
Maggi
,
A.
,
Montemayor
,
L. C.
,
Comella
,
A.
,
Kochmann
,
D. M.
, and
Greer
,
J. R.
,
2017
, “
Reexamining the Mechanical Property Space of Three-Dimensional Lattice Architectures
,”
Acta Mater.
,
140
, pp.
424
432
.
18.
Yuan
,
X.
,
Chen
,
M.
,
Yao
,
Y.
,
Guo
,
X.
,
Huang
,
Y.
,
Peng
,
Z.
,
Xu
,
B.
, et al
,
2021
, “
Recent Progress in the Design and Fabrication of Multifunctional Structures Based on Metamaterials
,”
Curr. Opin. Solid State Mater. Sci.
,
25
(
1
), p.
100883
.
19.
Zadpoor
,
A. A.
,
2016
, “
Mechanical Meta-Materials
.”
Mater. Horiz.
,
3
(
5
), pp.
371
381
.
20.
Tao
,
R.
,
Xi
,
L.
,
Wu
,
W.
,
Li
,
Y.
,
Liao
,
B.
,
Liu
,
L.
,
Leng
,
J.
, and
Fang
,
D.
,
2020
, “
4D Printed Multi-Stable Metamaterials With Mechanically Tunable Performance
,”
Compos. Struct.
,
252
, p.
112663
.
21.
Surjadi
,
J. U.
,
Gao
,
L.
,
Du
,
H.
,
Li
,
X.
,
Xiong
,
X.
,
Fang
,
N. X.
, and
Lu
,
Y.
,
2019
, “
Mechanical Metamaterials and Their Engineering Applications
,”
Adv. Eng. Mater.
,
21
(
3
), p.
1800864
.
22.
Rafsanjani
,
A.
, and
Pasini
,
D.
,
2016
, “
Bistable Auxetic Mechanical Metamaterials Inspired by Ancient Geometric Motifs
,”
Extreme Mech. Lett.
,
9
, pp.
291
296
.
23.
Meza
,
L. R.
,
Das
,
S.
, and
Greer
,
J. R.
,
2014
, “
Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices
,”
Science
,
345
(
6202
), pp.
1322
1326
.
24.
Zhang
,
X.
,
Vyatskikh
,
A.
,
Gao
,
H.
,
Greer
,
J. R.
, and
Li
,
X.
,
2019
, “
Lightweight, Flaw-Tolerant, and Ultrastrong Nanoarchitected Carbon
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
14
), pp.
6665
6672
.
25.
Bauer
,
J.
,
Schroer
,
A.
,
Schwaiger
,
R.
, and
Kraft
,
O.
,
2016
, “
The Impact of Size and Loading Direction on the Strength of Architected Lattice Materials
,”
Adv. Eng. Mater.
,
18
(
9
), pp.
1537
1543
.
26.
Ma
,
C.
,
Lei
,
H.
,
Liang
,
J.
,
Wu
,
W.
,
Wang
,
T.
, and
Fang
,
D.
,
2018
, “
Macroscopic Mechanical Response of Chiral-Type Cylindrical Metastructures Under Axial Compression Loading
,”
Mater. Des.
,
158
, pp.
198
212
.
27.
Ma
,
C.
,
Lei
,
H.
,
Hua
,
J.
,
Bai
,
Y.
,
Liang
,
J.
, and
Fang
,
D.
,
2018
, “
Experimental and Simulation Investigation of the Reversible Bi-Directional Twisting Response of Tetra-Chiral Cylindrical Shells
,”
Compos. Struct.
,
203
, pp.
142
152
.
28.
Hewage
,
T. A.
,
Alderson
,
K. L.
,
Alderson
,
A.
, and
Scarpa
,
F.
,
2016
, “
Double-Negative Mechanical Metamaterials Displaying Simultaneous Negative Stiffness and Negative Poisson’s Ratio Properties
,”
Adv. Mater.
,
28
(
46
), pp.
10323
10332
.
29.
Li
,
H.
,
Ma
,
Y.
,
Wen
,
W.
,
Wu
,
W.
,
Lei
,
H.
, and
Fang
,
D.
,
2017
, “
In Plane Mechanical Properties of Tetrachiral and Antitetrachiral Hybrid Metastructures
,”
J. Appl. Mech. Trans. ASME
,
84
(
8
), pp.
1
11
.
30.
Yang
,
H.
, and
Ma
,
L.
,
2020
, “
1D to 3D Multi-Stable Architected Materials With Zero Poisson’s Ratio and Controllable Thermal Expansion
,”
Mater. Des.
,
188
, pp.
1
16
.
31.
Vangbo
,
M.
,
1998
, “
An Analytical Analysis of a Compressed Bistable Buckled Beam
,”
Sens. Actuators, A
,
69
(
3
), pp.
212
216
.
32.
Hua
,
J.
,
Lei
,
H.
,
Zhang
,
Z.
,
Gao
,
C.
, and
Fang
,
D.
,
2019
, “
Multistable Cylindrical Mechanical Metastructures: Theoretical and Experimental Studies
,”
J. Appl. Mech. Trans. ASME
,
86
(
7
), pp.
1
10
.
33.
Ren
,
C.
,
Yang
,
D.
, and
Qin
,
H.
,
2018
, “
Mechanical Performance of Multidirectional Buckling-Based Negative Stiffness Metamaterials: An Analytical and Numerical Study
,”
Materials
,
11
(
7
), p.
1078
.
34.
Yang
,
H.
, and
Ma
,
L.
,
2020
, “
1D and 2D Snapping Mechanical Metamaterials With Cylindrical Topology
,”
Int. J. Solids Struct.
,
204–205
, pp.
220
232
.
35.
Kochmann
,
D. M.
, and
Bertoldi
,
K.
,
2017
, “
Exploiting Microstructural Instabilities in Solids and Structures: From Metamaterials to Structural Transitions
,”
ASME Appl. Mech. Rev.
,
69
(
5
), p.
050801
.
36.
Lazarus
,
A.
, and
Reis
,
P. M.
,
2015
, “
Soft Actuation of Structured Cylinders Through Auxetic Behavior
,”
Adv. Eng. Mater.
,
17
(
6
), pp.
815
820
.
37.
Von Kármán
,
T.
, and
Tsien
,
H. S.
,
1941
, “
The Buckling of Thin Cylindrical Shells Under Axial Compression
,”
J. Aeronaut. Sci.
,
8
(
8
), pp.
303
312
.
38.
Cooley
,
S. A.
,
Yang
,
H.
, and
Virgin
,
L. N.
,
2023
, “
3D-printing and Cylinder Buckling: Challenges and Opportunities
,”
Philos. Trans. R. Soc., A
,
381
(
2244
), p.
20220035
.
39.
Ventsel
,
E.
,
Krauthammer
,
T.
, and
Carrera
,
E. J.
,
2002
, “
Thin Plates and Shells: Theory, Analysis, and Applications
,”
ASME Appl. Mech. Rev.
,
55
(
4
), pp.
B72
B73
.
40.
Ning
,
X.
, and
Pellegrino
,
S.
,
2015
, “
Imperfection-Insensitive Axially Loaded Thin Cylindrical Shells
,”
Int. J. Solids Struct.
,
62
, pp.
39
51
.
41.
Doshi
,
M.
,
2023
, “
Studying, Tailoring, and Harnessing Structural Instability for Advanced Thin-Walled and Architected Structures
,”
Doctoral diss.
,
The Pennsylvania State University
.
42.
Jones
,
R. M.
,
2006
,
Buckling of Bars, Plates, and Shells
,
Bull Ridge Corporation
,
Blacksburg, VA
.
43.
Mikulas
,
M. M.
, Jr.
,
1978
, “
Structural Efficiency of Long Lightly Loaded Truss and Isogrid Columns for Space Applications
.” No. NASA-TM-78687.
You do not currently have access to this content.