Abstract

Natural protective materials offer unparalleled solutions for impact-resistant material designs that are simultaneously lightweight, strong, and tough. Particularly, the Bouligand structure found in the dactyl club of mantis shrimp and the staggered structure in nacre achieve excellent mechanical strength, toughness, and impact resistance. Previous studies have shown that hybrid designs by combining different bioinspired microstructures can lead to enhanced mechanical strength and energy dissipation. Nevertheless, it remains unknown whether combining Bouligand and staggered structures in nanofibrillar cellulose (NFC) films, forming a discontinuous fibrous Bouligand (DFB) architecture, can achieve enhanced impact resistance against projectile penetration. Additionally, the failure mechanisms under such dynamic loading conditions have been minimally understood. In our study, we systematically investigate the dynamic failure mechanisms and quantify the impact resistance of NFC thin films with DFB architecture by leveraging previously developed coarse-grained models and ballistic impact molecular dynamics simulations. We find that when nanofibrils achieve a critical length and form DFB architecture, the impact resistance of NFC films outperforms the counterpart films with continuous fibrils by comparing their specific ballistic limit velocities and penetration energies. We also find that the underlying mechanisms contributing to this improvement include enhanced fibril sliding, intralayer and interlayer crack bridging, and crack twisting in the thickness direction enabled by the DFB architecture. Our results show that by combining Bouligand and staggered structures in NFC films, their potential for protective applications can be further improved. Our findings can provide practical guidelines for the design of protective films made of nanofibrils.

References

1.
Qin
,
X.
,
Marchi
,
B. C.
,
Meng
,
Z.
, and
Keten
,
S.
,
2019
, “
Impact Resistance of Nanocellulose Films With Bioinspired Bouligand Microstructures
,”
Nanoscale Adv.
,
1
(
4
), pp.
1351
1361
.
2.
Wu
,
K.
,
Song
,
Z.
,
Zhang
,
S.
,
Ni
,
Y.
,
Cai
,
S.
,
Gong
,
X.
,
He
,
L.
, and
Yu
,
S.-H.
,
2020
, “
Discontinuous Fibrous Bouligand Architecture Enabling Formidable Fracture Resistance With Crack Orientation Insensitivity
,”
Proc. Natl. Acad. Sci. U. S. A.
,
117
(
27
), pp.
15465
15472
.
3.
Yang
,
W.
,
Sherman
,
V. R.
,
Gludovatz
,
B.
,
Mackey
,
M.
,
Zimmermann
,
E. A.
,
Chang
,
E. H.
,
Schaible
, et al
,
2014
, “
Protective Role of Arapaima Gigas Fish Scales: Structure and Mechanical Behavior
,”
Acta Biomater.
,
10
(
8
), pp.
3599
3614
.
4.
Weaver
,
J. C.
,
Milliron
,
G. W.
,
Miserez
,
A.
,
Evans-Lutterodt
,
K.
,
Herrera
,
S.
,
Gallana
,
I.
,
Mershon
,
W. J.
, et al
,
2012
, “
The Stomatopod Dactyl Club: A Formidable Damage-Tolerant Biological Hammer
,”
Science
,
336
(
6086
), pp.
1275
1280
.
5.
Natarajan
,
B.
, and
Gilman
,
J. W.
,
2018
, “
Bioinspired Bouligand Cellulose Nanocrystal Composites: A Review of Mechanical Properties
,”
Philos. Trans. R. Soc., A
,
376
(
2112
), p.
20170050
.
6.
An
,
Y.
,
Yang
,
Y.
,
Jia
,
Y.
,
Han
,
W.
, and
Cheng
,
Y.
,
2022
, “
Mechanical Properties of Biomimetic Ceramic With Bouligand Architecture
,”
J. Am. Ceram. Soc.
,
105
(
4
), pp.
2385
2391
.
7.
Jia
,
Z.
,
Yu
,
Y.
,
Hou
,
S.
, and
Wang
,
L.
,
2019
, “
Biomimetic Architected Materials With Improved Dynamic Performance
,”
J. Mech. Phys. Solids
,
125
, pp.
178
197
.
8.
Grunenfelder
,
L. K.
,
Suksangpanya
,
N.
,
Salinas
,
C.
,
Milliron
,
G.
,
Yaraghi
,
N.
,
Herrera
,
S.
,
Evans-Lutterodt
,
K.
,
Nutt
,
S. R.
,
Zavattieri
,
P.
, and
Kisailus
,
D.
,
2014
, “
Bio-Inspired Impact-Resistant Composites
,”
Acta Biomater.
,
10
(
9
), pp.
3997
4008
.
9.
Islam
,
M. K.
,
Hazell
,
P. J.
,
Escobedo
,
J. P.
, and
Wang
,
H.
,
2021
, “
Biomimetic Armour Design Strategies for Additive Manufacturing: A Review
,”
Mater. Des.
,
205
, p.
109730
.
10.
An
,
Y.
,
Song
,
M.
,
Wan
,
K.
,
Jia
,
Y.
,
Yang
,
Y.
, and
Cheng
,
Y.
,
2023
, “
Anisotropic Friction Properties of Biomimetic Cf/ZrB2-SiC Ceramic Composites With Bouligand Structures
,”
Tribol. Int.
,
186
, p.
108638
.
11.
Chen
,
Y.
,
Dang
,
B.
,
Fu
,
J.
,
Zhang
,
J.
,
Liang
,
H.
,
Sun
,
Q.
,
Zhai
,
T.
, and
Li
,
H.
,
2022
, “
Bioinspired Construction of Micronano Lignocellulose Into an Impact Resistance “Wooden Armor” With Bouligand Structure
,”
ACS Nano
,
16
(
5
), pp.
7525
7534
.
12.
Barthelat
,
F.
,
Tang
,
H.
,
Zavattieri
,
P.
,
Li
,
C.-M.
, and
Espinosa
,
H.
,
2007
, “
On the Mechanics of Mother-of-Pearl: A key Feature in the Material Hierarchical Structure
,”
J. Mech. Phys. Solids
,
55
(
2
), pp.
306
337
.
13.
Barthelat
,
F.
,
Yin
,
Z.
, and
Buehler
,
M. J.
,
2016
, “
Structure and Mechanics of Interfaces in Biological Materials
,”
Nat. Rev. Mater.
,
1
(
4
), pp.
1
16
.
14.
Espinosa
,
H. D.
,
Rim
,
J. E.
,
Barthelat
,
F.
, and
Buehler
,
M. J.
,
2009
, “
Merger of Structure and Material in Nacre and Bone—Perspectives on De Novo Biomimetic Materials
,”
Prog. Mater. Sci.
,
54
(
8
), pp.
1059
1100
.
15.
Yin
,
Z.
,
Hannard
,
F.
, and
Barthelat
,
F.
,
2019
, “
Impact-Resistant Nacre-Like Transparent Materials
,”
Science
,
364
(
6447
), pp.
1260
1263
.
16.
Gao
,
H.
,
Ji
,
B.
,
Jäger
,
I. L.
,
Arzt
,
E.
, and
Fratzl
,
P.
,
2003
, “
Materials Become Insensitive to Flaws at Nanoscale: Lessons From Nature
,”
Proc. Natl. Acad. Sci. U. S. A.
,
100
(
10
), pp.
5597
5600
.
17.
Li
,
X.
,
Chang
,
W.-C.
,
Chao
,
Y. J.
,
Wang
,
R.
, and
Chang
,
M.
,
2004
, “
Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material: The Shell of Red Abalone
,”
Nano Lett.
,
4
(
4
), pp.
613
617
.
18.
Abitbol
,
T.
,
Rivkin
,
A.
,
Cao
,
Y.
,
Nevo
,
Y.
,
Abraham
,
E.
,
Ben-Shalom
,
T.
,
Lapidot
,
S.
, and
Shoseyov
,
O.
,
2016
, “
Nanocellulose, a Tiny Fiber With Huge Applications
,”
Curr. Opin. Biotechnol.
,
39
, pp.
76
88
.
19.
Lee
,
J. H.
,
Loya
,
P. E.
,
Lou
,
J.
, and
Thomas
,
E. L.
,
2014
, “
Dynamic Mechanical Behavior of Multilayer Graphene via Supersonic Projectile Penetration
,”
Science
,
346
(
6213
), pp.
1092
1096
.
20.
Lee
,
J.-H.
,
Veysset
,
D.
,
Singer
,
J. P.
,
Retsch
,
M.
,
Saini
,
G.
,
Pezeril
,
T.
,
Nelson
,
K. A.
, and
Thomas
,
E. L.
,
2012
, “
High Strain Rate Deformation of Layered Nanocomposites
,”
Nat. Commun.
,
3
(
1
), p.
1164
.
21.
Marchi
,
B. C.
, and
Keten
,
S.
,
2019
, “
Microstructure and Size Effects on the Mechanics of Two Dimensional, High Aspect Ratio Nanoparticle Assemblies
,”
Front. Mater.
,
6
, p.
174
.
22.
Moon
,
R. J.
,
Martini
,
A.
,
Nairn
,
J.
,
Simonsen
,
J.
, and
Youngblood
,
J.
,
2011
, “
Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites
,”
Chem. Soc. Rev.
,
40
(
7
), p.
3941
.
23.
Mencattelli
,
L.
, and
Pinho
,
S. T.
,
2020
, “
Ultra-Thin-Ply CFRP Bouligand Bio-Inspired Structures With Enhanced Load-Bearing Capacity, Delayed Catastrophic Failure and High Energy Dissipation Capability
,”
Compos. Part A: Appl. Sci. Manuf.
,
129
, p.
105655
.
24.
Jia
,
Z.
,
Yu
,
Y.
, and
Wang
,
L.
,
2019
, “
Learning From Nature: Use Material Architecture to Break the Performance Tradeoffs
,”
Mater. Des.
,
168
, p.
107650
.
25.
Jia
,
Z.
, and
Wang
,
L.
,
2019
, “
3D Printing of Biomimetic Composites With Improved Fracture Toughness
,”
Acta Mater.
,
173
, pp.
61
73
.
26.
Torres
,
A. M.
,
Trikanad
,
A. A.
,
Aubin
,
C. A.
,
Lambers
,
F. M.
,
Luna
,
M.
,
Rimnac
,
C. M.
,
Zavattieri
,
P.
, and
Hernandez
,
C. J.
,
2019
, “
Bone-Inspired Microarchitectures Achieve Enhanced Fatigue Life
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
49
), pp.
24457
24462
.
27.
Jackson
,
A.
,
Vincent
,
J. F.
, and
Turner
,
R.
,
1988
, “
The Mechanical Design of Nacre
,”
Proc. R. Soc. London, B
,
234
(
1277
), pp.
415
440
.
28.
Shang
,
J.
,
Ngern
,
N. H.
, and
Tan
,
V. B.
,
2016
, “
Crustacean-Inspired Helicoidal Laminates
,”
Compos. Sci. Technol.
,
128
, pp.
222
232
.
29.
Natarajan
,
B.
,
Emiroglu
,
C.
,
Obrzut
,
J.
,
Fox
,
D. M.
,
Pazmino
,
B.
,
Douglas
,
J. F.
, and
Gilman
,
J. W.
,
2017
, “
Dielectric Characterization of Confined Water in Chiral Cellulose Nanocrystal Films
,”
ACS Appl. Mater. Interfaces
,
9
(
16
), pp.
14222
14231
.
30.
Schütz
,
C.
,
Agthe
,
M.
,
Fall
,
A. B.
,
Gordeyeva
,
K.
,
Guccini
,
V.
,
Salajková
,
M.
,
Plivelic
,
T. S.
,
Lagerwall
,
J. P. F.
,
Salazar-Alvarez
,
G.
, and
Bergström
,
L.
,
2015
, “
Rod Packing in Chiral Nematic Cellulose Nanocrystal Dispersions Studied by Small-Angle X-Ray Scattering and Laser Diffraction
,”
Langmuir
,
31
(
23
), pp.
6507
6513
.
31.
Shopsowitz
,
K. E.
,
Qi
,
H.
,
Hamad
,
W. Y.
, and
Maclachlan
,
M. J.
,
2010
, “
Free-Standing Mesoporous Silica Films With Tunable Chiral Nematic Structures
,”
Nature
,
468
(
7322
), pp.
422
425
.
32.
Wang
,
B.
, and
Walther
,
A.
,
2015
, “
Self-Assembled, Iridescent, Crustacean-Mimetic Nanocomposites With Tailored Periodicity and Layered Cuticular Structure
,”
ACS Nano
,
9
(
11
), pp.
10637
10646
.
33.
Sellinger
,
A.
,
Weiss
,
P. M.
,
Nguyen
,
A.
,
Lu
,
Y.
,
Assink
,
R. A.
,
Gong
,
W.
, and
Brinker
,
C. J.
,
1998
, “
Continuous Self-Assembly of Organic–Inorganic Nanocomposite Coatings That Mimic Nacre
,”
Nature
,
394
(
6690
), pp.
256
260
.
34.
Luo
,
Y.
,
Li
,
Y.
,
Liu
,
K.
,
Li
,
L.
,
Wen
,
W.
,
Ding
,
S.
,
Huang
,
Y.
,
Liu
,
M.
,
Zhou
,
C.
, and
Luo
,
B.
,
2023
, “
Modulating of Bouligand Structure and Chirality Constructed Bionically Based on the Self-Assembly of Chitin Whiskers
,”
Biomacromolecules
,
24
(
6
), pp.
2942
2954
.
35.
Chami Khazraji
,
A.
, and
Robert
,
S.
,
2013
, “
Self-Assembly and Intermolecular Forces When Cellulose and Water Interact Using Molecular Modeling
,”
J. Nanomater.
,
2013
, pp.
1
12
.
36.
Narkevicius
,
A.
,
Steiner
,
L. M.
,
Parker
,
R. M.
,
Ogawa
,
Y.
,
Frka-Petesic
,
B.
, and
Vignolini
,
S.
,
2019
, “
Controlling the Self-Assembly Behavior of Aqueous Chitin Nanocrystal Suspensions
,”
Biomacromolecules
,
20
(
7
), pp.
2830
––
2838
.
37.
Parker
,
R. M.
,
Frka-Petesic
,
B.
,
Guidetti
,
G.
,
Kamita
,
G.
,
Consani
,
G.
,
Abell
,
C.
, and
Vignolini
,
S.
,
2016
, “
Hierarchical Self-Assembly of Cellulose Nanocrystals in a Confined Geometry
,”
ACS Nano
,
10
(
9
), pp.
8443
8449
.
38.
Parton
,
T. G.
,
Parker
,
R. M.
,
Van De Kerkhof
,
G. T.
,
Narkevicius
,
A.
,
Haataja
,
J. S.
,
Frka-Petesic
,
B.
, and
Vignolini
,
S.
,
2022
, “
Chiral Self-Assembly of Cellulose Nanocrystals is Driven by Crystallite Bundles
,”
Nat. Commun.
,
13
(
1
), p.
1
.
39.
Youngblood
,
J. P.
, and
Sottos
,
N. R.
,
2008
, “
Bioinspired Materials for Self-Cleaning and Self-Healing
,”
MRS Bull.
,
33
(
8
), pp.
732
741
.
40.
Parker
,
R. M.
,
Guidetti
,
G.
,
Williams
,
C. A.
,
Zhao
,
T.
,
Narkevicius
,
A.
,
Vignolini
,
S.
, and
Frka-Petesic
,
B.
,
2018
, “
The Self-Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance
,”
Adv. Mater.
,
30
(
19
), p.
1704477
.
41.
Yaraghi
,
N. A.
,
Guarín-Zapata
,
N.
,
Grunenfelder
,
L. K.
,
Hintsala
,
E.
,
Bhowmick
,
S.
,
Hiller
,
J. M.
,
Betts
,
M.
, et al
,
2016
, “
A Sinusoidally Architected Helicoidal Biocomposite
,”
Adv. Mater.
,
28
(
32
), pp.
6835
6844
.
42.
Yaraghi
,
N. A.
,
Trikanad
,
A. A.
,
Restrepo
,
D.
,
Huang
,
W.
,
Rivera
,
J.
,
Herrera
,
S.
,
Zhernenkov
,
M.
, et al
,
2019
, “
The Stomatopod Telson: Convergent Evolution in the Development of a Biological Shield
,”
Adv. Funct. Mater.
,
29
(
34
), p.
1902238
.
43.
Suksangpanya
,
N.
,
Yaraghi
,
N. A.
,
Pipes
,
R. B.
,
Kisailus
,
D.
, and
Zavattieri
,
P.
,
2018
, “
Crack Twisting and Toughening Strategies in Bouligand Architectures
,”
Int. J. Solids Struct.
,
150
, pp.
83
106
.
44.
Song
,
Z.
,
Ni
,
Y.
, and
Cai
,
S.
,
2019
, “
Fracture Modes and Hybrid Toughening Mechanisms in Oscillated/Twisted Plywood Structure
,”
Acta Biomater.
,
91
, pp.
284
293
.
45.
Amini
,
S.
,
Tadayon
,
M.
,
Idapalapati
,
S.
, and
Miserez
,
A.
,
2015
, “
The Role of Quasi-Plasticity in the Extreme Contact Damage Tolerance of the Stomatopod Dactyl Club
,”
Nat. Mater.
,
14
(
9
), pp.
943
950
.
46.
Yang
,
W.
,
Quan
,
H.
,
Meyers
,
M. A.
, and
Ritchie
,
R. O.
,
2019
, “
Arapaima Fish Scale: One of the Toughest Flexible Biological Materials
,”
Matter
,
1
(
6
), pp.
1557
1566
.
47.
Qin
,
X.
,
Feng
,
S.
,
Meng
,
Z.
, and
Keten
,
S.
,
2017
, “
Optimizing the Mechanical Properties of Cellulose Nanopaper Through Surface Energy and Critical Length Scale Considerations
,”
Cellulose
,
24
(
8
), pp.
3289
3299
.
48.
Yang
,
Z.
,
Chiang
,
C.-C.
, and
Meng
,
Z.
,
2023
, “
Investigation of Dynamic Impact Responses of Layered Polymer-Graphene Nanocomposite Films Using Coarse-Grained Molecular Dynamics Simulations
,”
Carbon
,
203
, pp.
202
210
.
49.
Meng
,
Z.
, and
Keten
,
S.
,
2018
, “
Unraveling the Effect of Material Properties and Geometrical Factors on Ballistic Penetration Energy of Nanoscale Thin Films
,”
ASME J. Appl. Mech.
,
85
(
12
), p.
121004
.
50.
Chiang
,
C.-C.
,
Breslin
,
J.
,
Weeks
,
S.
, and
Meng
,
Z.
,
2021
, “
Dynamic Mechanical Behaviors of Nacre-Inspired Graphene-Polymer Nanocomposites Depending on Internal Nanostructures
,”
Extreme Mech. Lett.
,
49
, p.
101451
.
51.
Giuntoli
,
A.
,
Hansoge
,
N. K.
,
Van Beek
,
A.
,
Meng
,
Z.
,
Chen
,
W.
, and
Keten
,
S.
,
2021
, “
Systematic Coarse-Graining of Epoxy Resins With Machine Learning-Informed Energy Renormalization
,”
Npj Comput. Mater.
,
7
(
1
), p.
168
.
52.
Wang
,
Y.
, and
Meng
,
Z.
,
2021
, “
Mechanical and Viscoelastic Properties of Wrinkled Graphene Reinforced Polymer Nanocomposites—Effect of Interlayer Sliding Within Graphene Sheets
,”
Carbon
,
177
, pp.
128
137
.
53.
Yang
,
J.
,
Custer
,
D.
,
Chiang
,
C. C.
,
Meng
,
Z.
, and
Yao
,
X.
,
2021
, “
Understanding the Mechanical and Viscoelastic Properties of Graphene Reinforced Polycarbonate Nanocomposites Using Coarse-Grained Molecular Dynamics Simulations
,”
Comput. Mater. Sci.
,
191
, p.
110339
.
54.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
55.
Humphrey
,
W.
,
Dalke
,
A.
, and
Schulten
,
K.
,
1996
, “
VMD: Visual Molecular Dynamics
,”
J. Mol. Graph.
,
14
(
1
), pp.
33
38
.
56.
Wu
,
X.
,
Moon
,
R. J.
, and
Martini
,
A.
,
2014
, “
Tensile Strength of I β Crystalline Cellulose Predicted by Molecular Dynamics Simulation
,”
Cellulose
,
21
(
4
), pp.
2233
2245
.
57.
Meng
,
Z.
,
Singh
,
A.
,
Qin
,
X.
, and
Keten
,
S.
,
2017
, “
Reduced Ballistic Limit Velocity of Graphene Membranes Due to Cone Wave Reflection
,”
Extreme Mech. Lett.
,
15
, pp.
70
77
.
58.
Hazzard
,
M. K.
,
Hallett
,
S.
,
Curtis
,
P. T.
,
Iannucci
,
L.
, and
Trask
,
R. S.
,
2017
, “
Effect of Fibre Orientation on the Low Velocity Impact Response of Thin Dyneema® Composite Laminates
,”
Int. J. Impact Eng.
,
100
, pp.
35
45
.
59.
Xia
,
W.
,
Ruiz
,
L.
,
Pugno
,
N. M.
, and
Keten
,
S.
,
2016
, “
Critical Length Scales and Strain Localization Govern the Mechanical Performance of Multi-Layer Graphene Assemblies
,”
Nanoscale
,
8
(
12
), pp.
6456
6462
.
60.
Meng
,
Q.
,
Gao
,
Y.
,
Shi
,
X.
, and
Feng
,
X.-Q.
,
2022
, “
Three-Dimensional Crack Bridging Model of Biological Materials With Twisted Bouligand Structures
,”
J. Mech. Phys. Solids
,
159
, p.
104729
.
61.
Ritchie
,
R. O.
,
2011
, “
The Conflicts Between Strength and Toughness
,”
Nat. Mater.
,
10
(
11
), pp.
817
822
.
62.
Meo
,
M.
,
Rizzo
,
F.
,
Portus
,
M.
, and
Pinto
,
F.
,
2021
, “
Bioinspired Helicoidal Composite Structure Featuring Functionally Graded Variable Ply Pitch
,”
Materials
,
14
(
18
), p.
5133
.
63.
Suksangpanya
,
N.
,
Yaraghi
,
N. A.
,
Kisailus
,
D.
, and
Zavattieri
,
P.
,
2017
, “
Twisting Cracks in Bouligand Structures
,”
J. Mech. Behav. Biomed. Mater.
,
76
, pp.
38
57
.
64.
Alwan
,
F. H. A.
,
Prabowo
,
A. R.
,
Muttaqie
,
T.
,
Muhayat
,
N.
,
Ridwan
,
R.
, and
Laksono
,
F. B.
,
2022
, “
Assessment of Ballistic Impact Damage on Aluminum and Magnesium Alloys Against High Velocity Bullets by Dynamic FE Simulations
,”
J. Mech. Behav. Mater.
,
31
(
1
), pp.
595
616
.
65.
Ouyang
,
W.
,
Gong
,
B.
,
Wang
,
H.
,
Scarpa
,
F.
,
Su
,
B.
, and
Peng
,
H.-X.
,
2021
, “
Identifying Optimal Rotating Pitch Angles in Composites With Bouligand Structure
,”
Compos. Commun.
,
23
, p.
100602
.
66.
Tabiei
,
A.
, and
Nilakantan
,
G.
,
2008
, “
Ballistic Impact of Dry Woven Fabric Composites: A Review
,”
ASME Appl. Mech. Rev.
,
61
(
1
), p.
1
.
67.
Sinko
,
R.
,
Qin
,
X.
, and
Keten
,
S.
,
2015
, “
Interfacial Mechanics of Cellulose Nanocrystals
,”
MRS Bull.
,
40
(
4
), pp.
340
348
.
You do not currently have access to this content.