Abstract

Buckling, a phenomenon historically considered undesirable, has recently been harnessed to enable innovative functionalities in materials and structures. While approaches to achieve specific buckling behaviors are widely studied, tuning these behaviors in fabricated structures without altering their geometry remains a major challenge. Here, we introduce an inverse design approach to tune buckling behavior in magnetically active structures through the variation of applied magnetic stimuli. Our proposed magneto-mechanical topology optimization formulation not only generates the geometry and magnetization distribution of these structures but also informs how the external magnetic fields should be applied to control their buckling behaviors. By utilizing the proposed strategy, we discover magnetically active structures showcasing a broad spectrum of tunable buckling mechanisms, including programmable peak forces and buckling displacements, as well as controllable mechano- and magneto-induced bistability. Furthermore, we experimentally demonstrate that multiple unit designs can be assembled into architectures, resulting in tunable multistability and programmable buckling sequences under distinct applied magnetic fields. By employing a hybrid fabrication method, we manufacture and experimentally validate the generated designs and architectures, confirming their ability to exhibit precisely programmed and tunable buckling behaviors. This research contributes to the advancement of multifunctional materials and structures that harness buckling phenomena, unlocking transformative potential for various applications, including robotics, energy harvesting, and deployable and reconfigurable devices.

References

1.
Chi
,
Y.
,
Li
,
Y.
,
Zhao
,
Y.
,
Hong
,
Y.
,
Tang
,
Y.
, and
Yin
,
J.
,
2022
, “
Bistable and Multistable Actuators for Soft Robots: Structures, Materials, and Functionalities
,”
Adv. Mater.
,
34
(
19
), p.
2110384
.
2.
Hu
,
N.
, and
Burgueño
,
R.
,
2015
, “
Buckling-Induced Smart Applications: Recent Advances and Trends
,”
Smart Mater. Struct.
,
24
(
6
), p.
063001
.
3.
Tan
,
X.
,
Wang
,
B.
,
Yao
,
Y.
,
Yao
,
K.
,
Kang
,
Y.
,
Zhu
,
S.
,
Chen
,
S.
, and
Xu
,
P.
,
2020
, “
Programmable Buckling-Based Negative Stiffness Metamaterial
,”
Mater. Lett.
,
262
, p.
127072
.
4.
Xu
,
Z.
,
Fan
,
Z.
,
Zi
,
Y.
,
Zhang
,
Y.
, and
Huang
,
Y.
,
2020
, “
An Inverse Design Method of Buckling-Guided Assembly for Ribbon-Type 3d Structures
,”
ASME J. Appl. Mech.
,
87
(
3
), p.
031004
.
5.
Hua
,
J.
,
Lei
,
H.
,
Gao
,
C.-F.
, and
Fang
,
D.
,
2022
, “
A Novel Design of Multistable Metastructure With Nonuniform Cross Section
,”
ASME J. Appl. Mech.
,
89
(
5
), p.
051010
.
6.
Li
,
Z.
, and
Saif
,
M. T. A.
,
2021
, “
Mechanics of Biohybrid Valveless Pump-Bot
,”
ASME J. Appl. Mech.
,
88
(
11
), p.
111004
.
7.
Alturki
,
M.
, and
Burgueño
,
R.
,
2019
, “
Multistable Cosine-Curved Dome System for Elastic Energy Dissipation
,”
ASME J. Appl. Mech.
,
86
(
9
), p.
091002
.
8.
Cleary
,
J.
, and
Su
,
H.-J.
,
2015
, “
Modeling and Experimental Validation of Actuating a Bistable Buckled Beam Via Moment Input
,”
ASME J. Appl. Mech.
,
82
(
5
), p.
051005
.
9.
Li
,
H.
,
Wang
,
X.
,
Zhu
,
F.
,
Ning
,
X.
,
Wang
,
H.
,
Rogers
,
J. A.
,
Zhang
,
Y.
, and
Huang
,
Y.
,
2018
, “
Viscoelastic Characteristics of Mechanically Assembled Three-Dimensional Structures Formed by Compressive Buckling
,”
ASME J. Appl. Mech.
,
85
(
12
), p.
121002
.
10.
Kim
,
Y.
, and
Zhao
,
X.
,
2022
, “
Magnetic Soft Materials and Robots
,”
Chem. Rev.
,
122
(
5
), pp.
5317
5364
.
11.
Zhao
,
R.
,
Kim
,
Y.
,
Chester
,
S. A.
,
Sharma
,
P.
, and
Zhao
,
X.
,
2019
, “
Mechanics of Hard-Magnetic Soft Materials
,”
J. Mech. Phys. Solids.
,
124
, pp.
244
263
.
12.
Zhang
,
R.
,
Wu
,
S.
,
Ze
,
Q.
, and
Zhao
,
R.
,
2020
, “
Micromechanics Study on Actuation Efficiency of Hard-Magnetic Soft Active Materials
,”
ASME J. Appl. Mech.
,
87
(
9
), p.
091008
.
13.
Chen
,
T.
,
Pauly
,
M.
, and
Reis
,
P. M.
,
2021
, “
A Reprogrammable Mechanical Metamaterial With Stable Memory
,”
Nature
,
589
(
7842
), pp.
386
390
.
14.
Abbasi
,
A.
,
Sano
,
T. G.
,
Yan
,
D.
, and
Reis
,
P. M.
,
2023
, “
Snap Buckling of Bistable Beams Under Combined Mechanical and Magnetic Loading
,”
Philos. Trans. R. Soc. A
,
381
(
2244
), p.
20220029
.
15.
Yan
,
D.
,
Pezzulla
,
M.
,
Cruveiller
,
L.
,
Abbasi
,
A.
, and
Reis
,
P. M.
,
2021
, “
Magneto-Active Elastic Shells With Tunable Buckling Strength
,”
Nat. Commun.
,
12
(
1
), p.
2831
.
16.
Pal
,
A.
, and
Sitti
,
M.
,
2023
, “
Programmable Mechanical Devices Through Magnetically Tunable Bistable Elements
,”
Proc. Natl. Acad. Sci. USA
,
120
(
15
), p.
e2212489120
.
17.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2013
,
Topology Optimization: Theory, Methods, and Applications
,
Springer Science & Business Media
,
Heidelberg, Germany
.
18.
Wang
,
C.
,
Zhao
,
Z.
,
Zhou
,
M.
,
Sigmund
,
O.
, and
Zhang
,
X. S.
,
2021
, “
A Comprehensive Review of Educational Articles on Structural and Multidisciplinary Optimization
,”
Struct. Multidiscipl. Optim.
,
64
, pp.
1
54
.
19.
Bruns
,
T.
,
Sigmund
,
O.
, and
Tortorelli
,
D. A.
,
2002
, “
Numerical Methods for the Topology Optimization of Structures that Exhibit Snap-through
,”
Int. J. Numer. Methods Eng.
,
55
(
10
), pp.
1215
1237
.
20.
Bhattacharyya
,
A.
,
Conlan-Smith
,
C.
, and
James
,
K. A.
,
2019
, “
Design of a Bi-stable Airfoil With Tailored Snap-Through Response Using Topology Optimization
,”
Comput. Aided Des.
,
108
, pp.
42
55
.
21.
Li
,
W.
,
Wang
,
F.
,
Sigmund
,
O.
, and
Zhang
,
X. S.
,
2022
, “
Digital Synthesis of Free-Form Multimaterial Structures for Realization of Arbitrary Programmed Mechanical Responses
,”
Proc. Natl. Acad. Sci. USA
,
119
(
10
), p.
e2120563119
.
22.
Zhao
,
Z.
, and
Zhang
,
X. S.
,
2022
, “
Topology Optimization of Hard-Magnetic Soft Materials
,”
J. Mech. Phys. Solids
,
158
, p.
104628
.
23.
Tian
,
J.
,
Li
,
M.
,
Han
,
Z.
,
Chen
,
Y.
,
Gu
,
X. D.
,
Ge
,
Q.
, and
Chen
,
S.
,
2022
, “
Conformal Topology Optimization of Multi-Material Ferromagnetic Soft Active Structures Using an Extended Level Set Method
,”
Comput. Methods. Appl. Mech. Eng.
,
389
, p.
114394
.
24.
Zhao
,
Z.
, and
Zhang
,
X. S.
,
2023
, “
Encoding Reprogrammable Properties Into Magneto-Mechanical Materials Via Topology Optimization
,”
NPJ Comput. Mater.
,
9
(
1
), p.
57
.
25.
Wang
,
C.
,
Zhao
,
Z.
, and
Zhang
,
X. S.
,
2023
, “
Inverse Design of Magneto-Active Metasurfaces and Robots: Theory, Computation, and Experimental Validation
,”
Comput. Methods. Appl. Mech. Eng.
In Press
.
26.
Yan
,
D.
,
Aymon
,
B. F.
, and
Reis
,
P. M.
,
2023
, “
A Reduced-Order, Rotation-Based Model for Thin Hard-Magnetic Plates
,”
J. Mech. Phys. Solids.
,
170
, p.
105095
.
27.
Mukherjee
,
D.
,
Rambausek
,
M.
, and
Danas
,
K.
,
2021
, “
An Explicit Dissipative Model for Isotropic Hard Magnetorheological Elastomers
,”
J. Mech. Phys. Solids.
,
151
, p.
104361
.
28.
Leonard
,
M.
,
Wang
,
N.
,
Lopez-Pamies
,
O.
, and
Nakamura
,
T.
,
2020
, “
The Nonlinear Elastic Response of Filled Elastomers: Experiments vs. Theory for the Basic Case of Particulate Fillers of Micrometer Size
,”
J. Mech. Phys. Solids.
,
135
, p.
103781
.
29.
Lopez-Pamies
,
O.
,
2010
, “
A New I1-Based Hyperelastic Model for Rubber Elastic Materials
,”
Comptes Rendus Mecanique
,
338
(
1
), pp.
3
11
.
30.
Belytschko
,
T.
,
Liu
,
W. K.
,
Moran
,
B.
, and
Elkhodary
,
K.
,
2014
,
Nonlinear Finite Elements for Continua and Structures
,
John Wiley & Sons
,
Chichester, UK
.
31.
Armijo
,
L.
,
1966
, “
Minimization of Functions Having Lipschitz Continuous First Partial Derivatives
,”
Pac. J. Math.
,
16
(
1
), pp.
1
3
.
32.
Zhang
,
X.
,
Ramos
,
A. S.
, and
Paulino
,
G. H.
,
2017
, “
Material Nonlinear Topology Optimization Using the Ground Structure Method With a Discrete Filtering Scheme
,”
Struct. Multidiscipl. Optim.
,
55
(
6
), pp.
2045
2072
.
33.
Wang
,
F.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
On Projection Methods, Convergence and Robust Formulations in Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
43
(
6
), pp.
767
784
.
34.
Bourdin
,
B.
,
2001
, “
Filters in Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
50
(
9
), pp.
2143
2158
.
35.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
36.
Zhou
,
Y.
,
Nomura
,
T.
, and
Saitou
,
K.
,
2018
, “
Multi-Component Topology and Material Orientation Design of Composite Structures (MTO-C)
,”
Comput. Methods. Appl. Mech. Eng.
,
342
, pp.
438
457
.
37.
Wang
,
F.
,
Lazarov
,
B. S.
,
Sigmund
,
O.
, and
Jensen
,
J. S.
,
2014
, “
Interpolation Scheme for Fictitious Domain Techniques and Topology Optimization of Finite Strain Elastic Problems
,”
Comput. Methods. Appl. Mech. Eng.
,
276
, pp.
453
472
.
38.
Deng
,
H.
,
Cheng
,
L.
,
Liang
,
X.
,
Hayduke
,
D.
, and
To
,
A. C.
,
2020
, “
Topology Optimization for Energy Dissipation Design of Lattice Structures Through Snap-Through Behavior
,”
Comput. Methods Appl. Mech. Eng.
,
358
, p.
112641
.
39.
Duysinx
,
P.
, and
Bendsøe
,
M. P.
,
1998
, “
Topology Optimization of Continuum Structures With Local Stress Constraints
,”
Int. J. Numer. Methods Eng.
,
43
(
8
), pp.
1453
1478
.
40.
Bruggi
,
M.
,
2008
, “
On an Alternative Approach to Stress Constraints Relaxation in Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
36
(
2
), pp.
125
141
.
41.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
42.
Leon
,
S. E.
,
Lages
,
E. N.
,
De Araújo
,
C. N.
, and
Paulino
,
G. H.
,
2014
, “
On the Effect of Constraint Parameters on the Generalized Displacement Control Method
,”
Mech. Res. Commun.
,
56
, pp.
123
129
.
43.
Kim
,
Y.
,
Yuk
,
H.
,
Zhao
,
R.
,
Chester
,
S. A.
, and
Zhao
,
X.
,
2018
, “
Printing Ferromagnetic Domains for Untethered Fast-Transforming Soft Materials
,”
Nature
,
558
(
7709
), pp.
274
279
.
44.
Rahmati
,
A. H.
,
Jia
,
R.
,
Tan
,
K.
,
Zhao
,
X.
,
Deng
,
Q.
,
Liu
,
L.
, and
Sharma
,
P.
,
2023
, “
Theory of Hard Magnetic Soft Materials to Create Magnetoelectricity
,”
J. Mech. Phys. Solids.
,
171
, p.
105136
.
45.
Rahmati
,
A. H.
,
Jia
,
R.
,
Tan
,
K.
,
Liu
,
L.
,
Zhao
,
X.
,
Deng
,
Q.
, and
Sharma
,
P.
,
2023
, “
Giant Magnetoelectricity in Soft Materials Using Hard Magnetic Soft Materials
,”
Mater. Today Phys.
,
31
, p.
100969
.
46.
Yang
,
S.
, and
Sharma
,
P.
,
2023
, “
A Tutorial on the Stability and Bifurcation Analysis of the Electromechanical Behaviour of Soft Materials
,”
Appl. Mech. Rev.
,
75
(
4
), pp.
044801
.
47.
ASTM-D412
,
2016
,
Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers—Tension. ASTM International, West Conshohocken, PA
.
48.
ASTM-D575
,
2018
, Standard Test Methods for Rubber Properties in Compression,
ASTM International
,
West Conshohocken, PA
.
You do not currently have access to this content.