Abstract

The fluidic down-the-hole (DTH) hammer drilling is generally regarded as one of the best means for hot dry rock (HDR) drilling. The fluid oscillator, as the core part of the fluidic DTH hammer, is prone to fracture when subjected to impact loads due to its brittle characteristics. Therefore, a steel-layered structure with different contact areas is developed as a stress wave attenuator to protect the fluid oscillator for the DTH hammer under high-temperature drilling conditions. In this paper, the stress wave attenuation performance with different steel-layered structures is analyzed based on the split Hopkinson pressure bar (SHPB) technique. The effects of contact area ratio, the orientation of contact surfaces, and number of layers on the stress wave attenuation are investigated by numerical simulations and laboratory tests. It is found that the attenuation ratios in stress amplitude and impact energy gradually increased with the increase of the contact area ratio. Besides, the orientation of contact surfaces has a significant influence on the attenuation effect. For the layered structure with a two-layer object part, the maximum attenuation ratios of stress amplitude and impact energy are 62.4% and 79.6%, respectively, when the included angle between the two convex structures is increased to 90 deg. Additionally, the attenuation ratio of the layered structure can be improved by increasing the number of layers. The results demonstrate that the stress wave attenuator with layered structures has great potential for brittle materials protection against impact loads.

References

1.
Breede
,
K.
,
Dzebisashvili
,
K.
,
Liu
,
X.
, and
Falcone
,
G.
,
2013
, “
A Systematic Review of Enhanced (or Engineered) Geothermal Systems: Past, Present and Future
,”
Geotherm. Energy
,
1
(
1
), pp.
1
27
.
2.
Wang
,
G. L.
,
Zhang
,
W.
,
Ma
,
F.
,
Lin
,
W. J.
,
Liang
,
J. Y.
, and
Zhu
,
X.
,
2018
, “
Overview on Hydrothermal and Hot Dry Rock Researches in China
,”
China Geol.
,
1
(
2
), pp.
273
285
.
3.
Barbier
,
E.
,
2002
, “
Geothermal Energy Technology and Current Status: An Overview
,”
Renewable Sustainable Energy Rev.
,
6
(
1–2
), pp.
3
65
.
4.
Williamson
,
K. H.
,
Gunderson
,
R. P.
,
Hamblin
,
G. M.
,
Gallup
,
D. L.
, and
Kitz
,
K.
,
2001
, “
Geothermal Power Technology
,”
Proc. IEEE
,
89
(
12
), pp.
1783
1792
.
5.
Staysko
,
R.
,
Francis
,
B.
, and
Cote
,
B.
,
2011
, “
Fluid Hammer Drives Down Well Costs
,”
SPE/IADC Drilling Conference and Exhibition
,
Amsterdam, The Netherlands
,
Mar. 1–3
, Paper No. SPE-139926-MS, OnePetro.
6.
Li
,
Y. L.
,
Peng
,
J. M.
,
Li
,
J. M.
, and
Ge
,
D.
,
2022
, “
Theoretical and Experimental Study on Single Spherical Button Penetration Into Granite Rock Under Dynamic Impact Loading
,”
Rock Mech. Rock Eng.
,
55
(
1
), pp.
213
233
.
7.
Li
,
Y. L.
,
Peng
,
J. M.
,
Zhang
,
P. Y.
, and
Huang
,
C. Y.
,
2021
, “
Hard Rock Fragmentation in Percussion Drilling Considering Confining Pressure: Insights From an Experimental Study
,”
Int. J. Rock Mech. Min. Sci.
,
148
, pp.
104961
.
8.
Piekutowski
,
A. J.
,
Poormon
,
K. L.
,
Christiansen
,
E. L.
, and
Davis
,
B. A.
,
2011
, “
Performance of Whipple Shields at Impact Velocities Above 9 km/s
,”
Int. J. Impact Eng.
,
38
(
6
), pp.
495
503
.
9.
Fawaz
,
Z.
,
Zheng
,
W.
, and
Behdinan
,
K.
,
2004
, “
Numerical Simulation of Normal and Oblique Ballistic Impact on Ceramic Composite Armours
,”
Compos. Struct.
,
63
(
3–4
), pp.
387
395
.
10.
Ye
,
Z. B.
,
Li
,
Y. C.
,
Zhao
,
K.
,
Huang
,
R. Y.
,
Zhang
,
Y. L.
, and
Sun
,
X. W.
,
2019
, “
New Form of Equivalent Constitutive Model for Combined Shell Particle Composites and Its Application in Civil Air Defense
,”
Int. J. Civ. Eng.
,
17
(
5
), pp.
555
561
.
11.
Oh
,
J.
,
Jang
,
C.
, and
Kim
,
J. H.
,
2019
, “
Seismic Behavior Characteristic of High Damping Rubber Bearing Through Shaking Table Test
,”
J. Vibroeng.
,
18
(
3
), pp.
1591
1601
.
12.
Zhang
,
P. L.
,
Gong
,
Z. Z.
,
Tian
,
D. D.
,
Song
,
G.
,
Wu
,
Q.
,
Cao
,
Y.
,
Xu
,
K. B.
, and
Li
,
M.
,
2019
, “
Comparison of Shielding Performance of Al/Mg Impedance-Graded-Material-Enhanced and Aluminum Whipple Shields
,”
Int. J. Impact Eng.
,
126
, pp.
101
108
.
13.
Chin
,
E.
,
1999
, “
Army Focused Research Team on Functionally Graded Armor Composites
,”
Mater. Sci. Eng. A
,
259
(
2
), pp.
155
161
.
14.
Hui
,
D.
, and
Dutta
,
P. K.
,
2011
, “
A New Concept of Shock Mitigation by Impedance-Graded Materials
,”
Composites, Part B
,
42
(
42
), pp.
2181
2184
.
15.
Zhuang
,
S.
,
Ravichandran
,
G.
, and
Grady
,
D. E.
,
2003
, “
An Experimental Investigation of Shock Wave Propagation in Periodically Layered Composites
,”
J. Mech. Phys. Solids
,
51
(
2
), pp.
245
265
.
16.
Fernando
,
P. L. N.
,
Mohotti
,
D.
,
Remennikov
,
A.
,
Hazell
,
P. J.
,
Wang
,
H.
, and
Amin
,
A.
,
2020
, “
Experimental, Numerical and Analytical Study on the Shock Wave Propagation Through Impedance-Graded Multi-Metallic Systems
,”
Int. J. Mech. Sci.
,
178
, pp.
105621
.
17.
Gardner
,
N.
,
Wang
,
E.
, and
Shukla
,
A.
,
2012
, “
Performance of Functionally Graded Sandwich Composite Beams Under Shock Wave Loading
,”
Compos Struct.
,
94
(
5
), pp.
1755
1770
.
18.
Tasdemirci
,
A.
, and
Hall
,
I. W.
,
2009
, “
Development of Novel Multilayer Materials for Impact Applications: A Combined Numerical and Experimental Approach
,”
Mater. Des.
,
30
(
5
), pp.
1533
1541
.
19.
Pandya
,
K. S.
,
Kulkarni
,
M. D.
,
Warman
,
A.
, and
Naik
,
N. K.
,
2017
, “
Simulation of Stress Wave Attenuation in Plain Weave Fabric Composites During In-Plane Ballistic Impact
,”
Compos. Struct.
,
160
, pp.
748
757
.
20.
Tenenbaum
,
R. A.
, and
Zindeluk
,
M.
,
1992
, “
An Exact Solution for the One-Dimensional Elastic Wave Equation in Layered Media
,”
J. Acoust. Soc. Am.
,
92
(
6
), pp.
3364
3370
.
21.
Nygren
,
T.
,
Andersson
,
L. E.
, and
Lundberg
,
B.
,
1999
, “
Optimization of Elastic Junctions With Regard to Transmission of Wave Energy
,”
Wave Motion
,
29
(
3
), pp.
223
244
.
22.
Kusano
,
Y.
,
Fedorov
,
V.
,
McGugan
,
M.
,
Andersen
,
T. L.
, and
Johansen
,
N. F. J.
,
2018
, “
Impact Damage Reduction by Structured Surface Geometry
,”
Mater. Lett.
,
221
, pp.
296
300
.
23.
Rafiee-Dehkharghani
,
R.
,
Aref
,
A. J.
, and
Dargush
,
G. F.
,
2014
, “
Characterization of Multilayered Stress Wave Attenuators Subjected to Impulsive Transient Loadings
,”
J. Eng. Mech.
,
141
(
4
), p.
04014137
.
24.
Anfinsen
,
L. E.
,
1967
, “
Optimum Design of Layered Elastic Stress Wave Attenuators
,”
ASME J. Appl. Mech.
,
34
(
3
), pp.
751
755
.
25.
Luo
,
X.
,
Aref
,
A. J.
, and
Dargush
,
G. F.
,
2009
, “
Analysis and Optimal Design of Layered Structures Subjected to Impulsive Loading
,”
Comput. Struct.
,
87
(
9–10
), pp.
543
551
.
26.
Velo
,
A. P.
, and
Gazonas
,
G. A.
,
2003
, “
Optimal Design of a Two-Layered Elastic Strip Subjected to Transient Loading
,”
Int. J. Solids Struct.
,
40
(
23
), pp.
6417
6428
.
27.
Gusev
,
E. L.
,
2001
, “
Internal Structural Symmetry of Optimal Layered Structures
,”
Acoust. Phys.
,
47
(
1
), pp.
45
49
.
28.
Yang
,
Z. L.
,
Peng
,
J. M.
,
Li
,
Y.
,
Cheng
,
J. Q.
,
Lian
,
M. K.
,
Bo
,
K.
, and
Zhang
,
P. Y.
,
2022
, “
Study on the Response of the Steel/Poly-Ether-Ether-Ketone Layered Protective Structure for a Fluidic DTH Hammer
,”
J. Pet. Sci. Eng.
,
208
, pp.
109767
.
29.
Kolsky
,
H.
,
1964
, “
Stress Waves in Solids
,”
J. Sound Vib.
,
1
(
1
), pp.
88
110
.
30.
Li
,
J. C.
,
Rong
,
L. F.
,
Li
,
H. B.
, and
Hong
,
S. N.
,
2018
, “
An SHPB Test Study on Stress Wave Energy Attenuation in Jointed Rock Masses
,”
Rock Mech. Rock Eng.
,
52
(
2
), pp.
403
420
.
You do not currently have access to this content.