Abstract

When cylinders are packed and wrapped by the bands around the surface, the effective elastic behavior in the cross section of the assembly, which is of significance to its stability and integrity, can be controlled by the wrapping force in the band. The wrapping force is transferred to the cylinders through the Hertz contact between each pair of neighboring cylinders, which is validated by the experiments. The Singum model is introduced to study the mechanical behaviors of the packed cylinders with two-dimensional (2D) packing lattices, in which an inner cylinder is simulated by a continuum particle of Singum and the inter-cylinder force is governed by the Hertz contact model so as to derive the effective stress-strain relationship. The wrapping force will produce configurational forces given a displacement variation, which significantly changes the effective stiffness of the packed cylinders. The hexagonal packing exhibits isotropic elasticity whereas the square packing is anisotropic. The efficacy of our model is demonstrated by comparing the closed form elasticity against the numerical simulation and the previous models. The explicit form of elasticity can be used for packing design and quality control of cable construction and installation.

References

1.
Heitkam
,
S.
,
Drenckhan
,
W.
, and
Fröhlich
,
J.
,
2012
, “
Packing Spheres Tightly: Influence of Mechanical Stability on Close-Packed Sphere Structures
,”
Phys. Rev. Lett.
,
108
(
14
), p.
148302
.
2.
Hifi
,
M.
, and
M’hallah
,
R.
,
2009
, “
A Literature Review on Circle and Sphere Packing Problems: Models and Methodologies
,”
Adv. Operat. Res.
,
2009
, p.
150624
. .
3.
Stoyan
,
Y. G.
,
1983
, “
Mathematical Methods for Geometric Design
,”
Advances in CAD/CAM, Proceedings of PROLAMAT
,
Leningrad, USSR
,
May 16–18, 1982
, Vol.
82
, pp.
67
86
.
4.
Szabó
,
P. G.
,
Markót
,
M. C.
,
Csendes
,
T.
,
Specht
,
E.
,
Casado
,
L. G.
, and
García
,
I.
,
2007
,
New Approaches to Circle Packing in a Square: With Program Codes
, Vol.
6
,
Springer Science & Business Media
,
New York
.
5.
Hifi
,
M.
, and
M’Hallah
,
R.
,
2007
, “
A Dynamic Adaptive Local Search Algorithm for the Circular Packing Problem
,”
Eur. J. Operat. Res.
,
183
(
3
), pp.
1280
1294
.
6.
Woodcock
,
L.
,
1997
, “
Entropy Difference Between the Face-Centred Cubic and Hexagonal Close-Packed Crystal Structures
,”
Nature
,
385
(
6612
), pp.
141
143
.
7.
Werkmeister
,
S.
,
Dawson
,
A.
, and
Wellner
,
F.
,
2004
, “
Pavement Design Model for Unbound Granular Materials
,”
J. Transp. Eng.
,
130
(
5
), pp.
665
674
.
8.
Darve
,
F.
, and
Laouafa
,
F.
,
2000
, “
Instabilities in Granular Materials and Application to Landslides
,”
Mech. Cohes. Friction. Mater.: Int. J. Exp. Model. Comput. Mater. Struct.
,
5
(
8
), pp.
627
652
.
9.
Jiang
,
M.
,
Shen
,
Z.
, and
Li
,
L.
,
2016
, “
Noncoaxial Behavior of a Highly Angular Granular Material Subjected to Stress Variations in Simple Vertical Excavation
,”
Int. J. Geomech.
,
16
(
2
), p.
04015040
.
10.
Abed Zadeh
,
A.
,
Barés
,
J.
,
Brzinski
,
T. A.
,
Daniels
,
K. E.
,
Dijksman
,
J.
,
Docquier
,
N.
,
Everitt
,
H. O.
,
Kollmer
,
J. E.
,
Lantsoght
,
O.
,
Wang
,
D.
, et al.,
2019
, “
Enlightening Force Chains: A Review of Photoelasticimetry in Granular Matter
,”
Granul. Matter
,
21
(
4
), pp.
1
12
.
11.
Fonseca
,
J.
,
Nadimi
,
S.
,
Reyes-Aldasoro
,
C.
,
Coop
,
M.
,
2016
, “
Image-Based Investigation Into the Primary Fabric of Stress-Transmitting Particles in Sand
,”
Soils Found.
,
56
(
5
), pp.
818
834
.
12.
Ferellec
,
J.
, and
McDowell
,
G.
,
2010
, “
Modelling Realistic Shape and Particle Inertia in DEM
,”
Géotechnique
,
60
(
3
), pp.
227
232
.
13.
Houlsby
,
G.
,
2009
, “
Potential Particles: A Method for Modelling Non-Circular Particles in DEM
,”
Comput. Geotech.
,
36
(
6
), pp.
953
959
.
14.
Hertz
,
H.
,
1882
, “
Ueber die berührung fester elastischer körper.[on the fixed eelastic body contact]
,”
J. Reine Angew. Math.
,
1882
(
92
), pp.
156
171
.
15.
Mindlin
,
R. D.
, and
Deresiewicz
,
H.
,
1953
, “
Elastic Spheres in Contact Under Varying Oblique Forces
.”
16.
Nadimi
,
S.
,
Shire
,
T.
, and
Fonseca
,
J.
,
2017
, “
Comparison Between a μFe Model and DEM for an Assembly of Spheres Under Triaxial Compression
,”
EPJ Web of Conferences
,
Montpellier, France
,
July 3–7
, Vol.
140
,
EDP Sciences
, p.
15002
.
17.
Shewchuk
,
J.
,
2002
, “
Computational Geometry: Theory and Applications
.”
18.
Nadimi
,
S.
, and
Fonseca
,
J.
,
2018
, “
A Micro Finite-Element Model for Soil Behaviour: Numerical Validation
,”
Géotechnique
,
68
(
4
), pp.
364
369
.
19.
Duffy
,
J.
, and
Mindlin
,
R.
,
1957
, “
Stress-Strain Relations and Vibrations of a Granular Medium
.”
20.
Duffy
,
J.
,
1959
, “
A Differential Stress-Strain Relation for the Hexagonal Close-Packed Array of Elastic Spheres
.”
21.
Deresiewicz
,
H.
,
1958
, “
Stress-Strain Relations for a Simple Model of a Granular Medium
.”
22.
Makhlouf
,
H.
, and
Stewart
,
J.
,
1967
, “
Elastic Constants of Cubical-Tetrahedral and Tetragonal Sphenoidal Arrays of Uniform Spheres
,”
Proceedings of International Symposium of Wave Propagation and Dynamic Properties of Earth Materials
,
Albuquerque, NM
,
Aug. 23–25
, pp.
825
837
.
23.
Kishino
,
Y.
,
1978
, “
Statistical Consideration on Deformation Characteristics of Granular Materials
,”
Proceedings, US-Japan Seminar on Continuum Mechanical and Statistical Approaches in the Mechanics of Granular Materials
,
Sendai, Japan
,
June 5–9
,
Cowin
,
S. C.
, and
Satake
,
M.
, eds., Gakujutsu Bunken Fukyu-Kai, Tokyo, pp.
114
122
.
24.
Rothenburg
,
L.
, and
Selvadurai
,
A.
,
1981
, “
A Micromechanical Definition of the Cauchy Stress Tensor for Particulate Media. Mechanics of Structured Media
,”
Proceedings of International Symposium on Mechanical Behavior of Structured Media
,
Ottawa, Canada
,
May 18–21
,
Selvadurai
,
A. P. S.
, ed., pp.
469
486
.
25.
Chang
,
C.
,
1988
, “
Micromechanical Modelling of Constitutive Relations for Granular Material
,”
Stud. Appl. Mech.
,
20
, pp.
271
278
.
26.
Granik
,
V. T.
, and
Ferrari
,
M.
,
1993
, “
Microstructural Mechanics of Granular Media
,”
Mech. Mater.
,
15
(
4
), pp.
301
322
.
27.
Yin
,
H.
,
2022
, “
A Simplified Continuum Particle Model Bridging Interatomic Potentials and Elasticity of Solids
,”
J. Eng. Mech.
,
148
(
5
), p.
04022017
.
28.
Yin
,
H.
,
2022
, “
Generalization of the Singum Model for the Elasticity Prediction of Lattice Metamaterials and Composites
,”
ASCE J. Eng. Mech.
(in press).
29.
Nelson
,
J. K.
, and
Thater
,
G. G.
,
2013
, “
The Roosevelt Island Tramway Modernization Project
,”
Forensic Engineering 2012: Gateway to a Safer Tomorrow
,
San Francisco, CA
,
Oct. 31–Nov. 3, 2012
, pp.
1091
1100
.
30.
Montoya
,
A.
,
Deodatis
,
G.
,
Betti
,
R.
, and
Waisman
,
H.
,
2015
, “
Physics-Based Stochastic Model to Determine the Failure Load of Suspension Bridge Main Cables
,”
ASCE Comput. Civil Eng.
,
29
(
4
), p.
B4014002
.
31.
Bell
,
J. M.
,
1965
, “
Stress-Strain Characteristics of Cohesionless Granular Materials Subjected to Statically Applied Homogenous Loads in an Open System
,” Ph.D. thesis,
California Institute of Technology
,
Pasadena, CA
.
32.
Mindlin
,
R. D.
,
1949
, “
Compliance of Elastic Bodies in Contact
.”
33.
Ko
,
H.-Y.
, and
Scott
,
R. F.
,
1967
, “
Deformation of Sand in Hydrostatic Compression
,”
J. Soil Mech. Found. Div.
,
93
(
3
), pp.
137
156
.
34.
Mura
,
T.
,
1987
,
Micromechanics of Defects in Solids
, Vol.
3
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
, vol.
580
, p.
21
.
35.
Johnson
,
K. L.
,
1987
, “
Contact Mechanics
,”
J. App. Mech.
,
16
(
3
), pp.
259
268
.
36.
Yin
,
H.
,
2022
, “
Improved Singum Model Based on Finite Deformation of Crystals With the Thermodynamic Equation of State
,”
ASCE J. Eng. Mech.
(submitted).
37.
Maugin
,
G. A.
,
2016
,
Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics
,
CRC Press
,
New York
.
38.
Radzimovsky
,
E. I.
,
1953
, “
Stress Distribution and Strength Condition of Two Rolling Cylinders Pressed Together
,” Technical Report,
University of Illinois at Urbana Champaign, College of Engineering
,
Urbana, IL
.
39.
Goldsmith
,
W.
,
1960
,
Impact: The Theory and Physical Behaviour of Colliding Solids
,
Edward Arnold
,
London
.
40.
Pereira
,
C. M.
,
Ramalho
,
A. L.
, and
Ambrósio
,
J. A.
,
2011
, “
A Critical Overview of Internal and External Cylinder Contact Force Models
,”
Nonlinear Dyn.
,
63
(
4
), pp.
681
697
.
41.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
,
1994
, “
Continuous Contact Force Models for Impact Analysis in Multibody Systems
,”
Nonlinear Dyn.
,
5
(
2
), pp.
193
207
.
42.
Chang
,
C. S.
,
Chao
,
S. J.
, and
Chang
,
Y.
,
1995
, “
Estimates of Elastic Moduli for Granular Material With Anisotropic Random Packing Structure
,”
Int. J. Solids Struct.
,
32
(
14
), pp.
1989
2008
.
43.
Eshelby
,
J. D.
,
1951
, “
The Force on an Elastic Singularity
,”
Philos. Trans. R. Soc. Lond. Ser. A
,
244
(
877
), pp.
87
112
.
44.
Shan
,
G.
,
Yang
,
W.
,
Feng
,
J.
, and
Yang
,
M.
,
2006
, “
Advances in Test Methods for Poisson’s Ratio of Materials
,”
Mater Rev.
,
20
(
3
), pp.
15
20
.
You do not currently have access to this content.