Abstract

Mechanical failure and its interference with electrochemistry are a roadblock in deploying high-capacity electrodes for Li-ion batteries. Computational prediction of the electrochemomechanical behavior of high-capacity composite electrodes is a significant challenge because of (i) complex interplay between mechanics and electrochemistry in the form of stress-regulated Li transport and interfacial charge transfer, (ii) thermodynamic solution non-ideality, (iii) nonlinear deformation kinematics and material inelasticity, and (iv) evolving material properties over the state of charge. We develop a computational framework that integrates the electrochemical response of batteries modulated by large deformation, mechanical stresses, and dynamic material properties. We use silicon as a model system and construct a microstructurally resolved porous composite electrode model. The model concerns the effect of large deformation of silicon on charge conduction and electrochemical response of the composite electrode, impact of mechanical stress on Li transport and interfacial charge transfer, and asymmetric charging/discharging kinetics. The study captures the rate-dependent, coupled electrochemomechanical behavior of high-capacity composite electrodes that agrees well with experimental results.

References

1.
Chan
,
C. K.
,
Peng
,
H.
,
Liu
,
G.
,
McIlwrath
,
K.
,
Zhang
,
X. F.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2008
, “
High-Performance Lithium Battery Anodes Using Silicon Nanowires
,”
Nat. Nanotechnol.
,
3
(
1
), pp.
31
35
.
2.
Graetz
,
J.
,
Ahn
,
C. C.
,
Yazami
,
R.
, and
Fultz
,
B.
,
2004
, “
Nanocrystalline and Thin Film Germanium Electrodes With High Lithium Capacity and High Rate Capabilities
,”
J. Electrochem. Soc.
,
151
(
5
), p.
A698
.
3.
Xu
,
Y.
,
Liu
,
Q.
,
Zhu
,
Y.
,
Liu
,
Y.
,
Langrock
,
A.
,
Zachariah
,
M. R.
, and
Wang
,
C.
,
2013
, “
Uniform Nano-Sn/C Composite Anodes for Lithium Ion Batteries
,”
Nano Lett.
,
13
(
2
), pp.
470
474
.
4.
Nitta
,
N.
, and
Yushin
,
G.
,
2014
, “
High-Capacity Anode Materials for Lithium-Ion Batteries: Choice of Elements and Structures for Active Particles
,”
Part. Part. Syst. Charact.
,
31
(
3
), pp.
317
336
.
5.
Choi
,
J. W.
, and
Aurbach
,
D.
,
2016
, “
Promise and Reality of Post-Lithium-Ion Batteries With High Energy Densities
,”
Nat. Rev. Mater.
,
1
(
4
), p.
16013
.
6.
Zhang
,
W.-J.
,
2011
, “
A Review of the Electrochemical Performance of Alloy Anodes for Lithium-Ion Batteries
,”
J. Power Sources
,
196
(
1
), pp.
13
24
.
7.
Zhang
,
S.
,
Zhao
,
K.
,
Zhu
,
T.
, and
Li
,
J.
,
2017
, “
Electrochemomechanical Degradation of High-Capacity Battery Electrode Materials
,”
Prog. Mater. Sci.
,
89
, pp.
479
521
.
8.
Beaulieu
,
L. Y.
,
Eberman
,
K. W.
,
Turner
,
R. L.
,
Krause
,
L. J.
, and
Dahna
,
J. R.
,
2001
, “
Colossal Reversible Volume Changes in Lithium Alloys
,”
Electrochem. Solid-State Lett.
,
4
(
9
), pp.
7
10
.
9.
Müller
,
S.
,
Pietsch
,
P.
,
Brandt
,
B. E.
,
Baade
,
P.
,
De Andrade
,
V.
,
De Carlo
,
F.
, and
Wood
,
V.
,
2018
, “
Quantification and Modeling of Mechanical Degradation in Lithium-Ion Batteries Based on Nanoscale Imaging
,”
Nat. Commun.
,
9
(
1
), p.
2340
.
10.
Chan
,
C. K.
,
Ruffo
,
R.
,
Hong
,
S. S.
, and
Cui
,
Y.
,
2009
, “
Surface Chemistry and Morphology of the Solid Electrolyte Interphase on Silicon Nanowire Lithium-Ion Battery Anodes
,”
J. Power Sources
,
189
(
2
), pp.
1132
1140
.
11.
Su
,
X.
,
Wu
,
Q.
,
Li
,
J.
,
Xiao
,
X.
,
Lott
,
A.
,
Lu
,
W.
,
Sheldon
,
B. W.
, and
Wu
,
J.
,
2014
, “
Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review
,”
Adv. Energy Mater.
,
4
(
1
), pp.
1
23
.
12.
Ulus
,
A.
,
Electrochem
,
J.
,
Soc
,
A.
,
Ulus
,
A.
,
Rosenberg
,
Y.
,
Burstein
,
L.
, and
Peled
,
E.
,
2002
, “
Tin Alloy-Graphite Composite Anode for Lithium-Ion Batteries Tin Alloy-Graphite Composite Anode for Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
149
(
5
), p.
A635
.
13.
Radvanyi
,
E.
,
Porcher
,
W.
,
De Vito
,
E.
,
Montani
,
A.
,
Franger
,
S.
, and
Larbi
,
S.J.S.
,
2014
, “
Failure Mechanisms of Nano-Silicon Anodes Upon Cycling: An Electrode Porosity Evolution Model
,”
Phys. Chem. Chem. Phys.
,
16
(
32
), pp.
17142
17153
.
14.
Pietsch
,
P.
,
Westhoff
,
D.
,
Feinauer
,
J.
,
Eller
,
J.
,
Marone
,
F.
,
Stampanoni
,
M.
,
Schmidt
,
V.
, and
Wood
,
V.
,
2016
, “
Quantifying Microstructural Dynamics and Electrochemical Activity of Graphite and Silicon-Graphite Lithium Ion Battery Anodes
,”
Nat. Commun.
,
7
(
1
), p.
12909
.
15.
Dhillon
,
S.
,
Hernández
,
G.
,
Wagner
,
N. P.
,
Mari
,
A.
, and
Brandell
,
D.
,
2021
, “
Modelling Capacity Fade in Silicon-Graphite Composite Electrodes for Lithium-Ion Batteries
,”
Electrochim. Acta
,
377
, p.
138067
.
16.
Jerliu
,
B.
,
Hüger
,
E.
,
Horisberger
,
M.
,
Stahn
,
J.
, and
Schmidt
,
H.
,
2017
, “
Irreversible Lithium Storage During Lithiation of Amorphous Silicon Thin Film Electrodes Studied by In-Situ Neutron Reflectometry
,”
J. Power Sources
,
359
, pp.
415
421
.
17.
Lindgren
,
F.
,
Rehnlund
,
D.
,
Pan
,
R.
,
Pettersson
,
J.
,
Younesi
,
R.
,
Xu
,
C.
,
Gustafsson
,
T.
,
Edström
,
K.
, and
Nyholm
,
L.
,
2019
, “
On the Capacity Losses Seen for Optimized Nano-Si Composite Electrodes in Li-Metal Half-Cells
,”
Adv. Energy Mater.
,
9
(
33
), p.
1901608
.
18.
Rehnlund
,
D.
,
Lindgren
,
F.
,
Bo
,
S.
,
Pettersson
,
J.
,
Bexell
,
U.
,
Boman
,
M.
,
Edstro
,
K.
, and
Nyholm
,
L.
,
2017
, “
Lithium Trapping in Alloy Forming Electrodes and Current Collectors for Lithium Based Batteries
,”
Energy Environ. Sci.
,
10
(
6
), pp.
1350
1357
.
19.
Zhu
,
B.
,
Liu
,
G.
,
Lv
,
G.
,
Mu
,
Y.
,
Zhao
,
Y.
,
Wang
,
Y.
, and
Li
,
X.
,
2019
, “
Minimized Lithium Trapping by Isovalent Isomorphism for High Initial Coulombic Efficiency of Silicon Anodes
,”
Sci. Adv.
,
5
(
11
), p.
eaax0651
.
20.
de Vasconcelos
,
L. S.
,
Xu
,
R.
, and
Zhao
,
K.
,
2020
, “
Quantitative Spatiotemporal Li Profiling Using Nanoindentation
,”
J. Mech. Phys. Solids
,
144
, p.
104102
.
21.
Nguyen
,
H. T.
,
Yao
,
F.
,
Zamfir
,
M. R.
,
Biswas
,
C.
,
So
,
K. P.
,
Lee
,
Y. H.
,
Kim
,
S. M.
,
Cha
,
S. N.
,
Kim
,
J. M.
, and
Pribat
,
D.
,
2011
, “
Highly Interconnected Si Nanowires for Improved Stability Li-Ion Battery Anodes
,”
Adv. Energy Mater.
,
1
(
6
), pp.
1154
1161
.
22.
Chan
,
C. K.
,
Zhang
,
X. F.
, and
Cui
,
Y.
,
2008
, “
High Capacity Li Ion Battery Anodes Using Ge Nanowires
,”
Nano Lett.
,
8
(
1
), pp.
307
309
.
23.
Yao
,
Y.
,
McDowell
,
M. T.
,
Ryu
,
I.
,
Wu
,
H.
,
Liu
,
N.
,
Hu
,
L.
,
Nix
,
W. D.
, and
Cui
,
Y.
,
2011
, “
Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes With Long Cycle Life
,”
Nano Lett.
,
11
(
7
), pp.
2949
2954
.
24.
Cui
,
G.
,
Gu
,
L.
,
Zhi
,
L.
,
Kaskhedikar
,
N.
,
Van Aken
,
P. A.
,
Müllen
,
K.
, and
Maier
,
J.
,
2008
, “
A Germanium-Carbon Nanocomposite Material for Lithium Batteries
,”
Adv. Mater.
,
20
(
16
), pp.
3079
3083
.
25.
Park
,
M.-H.
,
Kim
,
M. G.
,
Joo
,
J.
,
Kim
,
K.
,
Kim
,
J.
,
Ahn
,
S.
,
Cui
,
Y.
, and
Cho
,
J.
,
2009
, “
Silicon Nanotube Battery Anodes
,”
Nano Lett.
,
9
(
11
), pp.
3844
3847
.
26.
Park
,
M. H.
,
Cho
,
Y.
,
Kim
,
K.
,
Kim
,
J.
,
Liu
,
M.
, and
Cho
,
J.
,
2011
, “
Germanium Nanotubes Prepared by Using the Kirkendall Effect as Anodes for High-Rate Lithium Batteries
,”
Angew. Chemie - Int. Ed.
,
50
(
41
), pp.
9647
9650
.
27.
Liu
,
N.
,
Wu
,
H.
,
McDowell
,
M. T.
,
Yao
,
Y.
,
Wang
,
C.
, and
Cui
,
Y.
,
2012
, “
A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes
,”
Nano Lett.
,
12
(
6
), pp.
3315
3321
.
28.
Zhang
,
W.-M.
,
Hu
,
J.-S.
,
Guo
,
Y.-G.
,
Zheng
,
S.-F.
,
Zhong
,
L.-S.
,
Song
,
W.-G.
, and
Wan
,
L.-J.
,
2008
, “
Tin-Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High-Performance Anode Material in Lithium-Ion Batteries
,”
Adv. Mater.
,
20
(
6
), pp.
1160
1165
.
29.
Ko
,
M.
,
Chae
,
S.
,
Jeong
,
S.
,
Oh
,
P.
, and
Cho
,
J.
,
2014
, “
Elastic a-Silicon Nanoparticle Backboned Graphene Hybrid as a Self-Compacting Anode for High-Rate Lithium Ion Batteries
,”
ACS Nano
,
8
(
8
), pp.
8591
8599
.
30.
Fan
,
Y.
,
Zhang
,
Q.
,
Xiao
,
Q.
,
Wang
,
X.
, and
Huang
,
K.
,
2013
, “
High Performance Lithium Ion Battery Anodes Based on Carbon Nanotube-Silicon Core-Shell Nanowires with Controlled Morphology
,”
Carbon N. Y.
,
59
, pp.
264
269
.
31.
Wang
,
X.
,
Susantyoko
,
R. A.
,
Fan
,
Y.
,
Sun
,
L.
,
Xiao
,
Q.
, and
Zhang
,
Q.
,
2014
, “
Vertically Aligned CNT-Supported Thick Ge Films as High-Performance 3D Anodes for Lithium Ion Batteries
,”
Small
,
10
(
14
), pp.
2826
2829
.
32.
Yi
,
R.
,
Dai
,
F.
,
Gordin
,
M.
,
Chen
,
S.
, and
Wang
,
D.
,
2013
, “
Micro-sized Si-C Composite With Interconnected Nanoscale Building Blocks as High-Performance Anodes.Pdf
,”
Adv. Energy Mater.
,
3
(
3
), pp.
295
300
.
33.
Tian
,
H.
,
Tan
,
X.
,
Xin
,
F.
, and
Wang
,
C.
,
2015
, “
Micro-Sized Nano-Porous Si/C Anodes for Lithium Ion Batteries
,”
Nano Energy
,
11
, pp.
490
499
.
34.
Dimov
,
N.
,
Kugino
,
S.
, and
Yoshio
,
M.
,
2004
, “
Mixed Silicon-Graphite Composites as Anode Material for Lithium Ion Batteries—Influence of Preparation Conditions on the Properties of the Material
,”
J. Power Sources
,
136
(
1
), pp.
108
114
.
35.
Fuchsbichler
,
B.
,
Stangl
,
C.
,
Kren
,
H.
,
Uhlig
,
F.
, and
Koller
,
S.
,
2011
, “
High Capacity Graphite-Silicon Composite Anode Material for Lithium-Ion Batteries
,”
J. Power Sources
,
196
(
5
), pp.
2889
2892
.
36.
Zheng
,
Y.
,
Seifert
,
H. J.
,
Shi
,
H.
,
Zhang
,
Y.
,
Kübel
,
C.
, and
Pfleging
,
W.
,
2019
, “
3D Silicon/Graphite Composite Electrodes for High-Energy Lithium-Ion Batteries
,”
Electrochim. Acta
,
317
, pp.
502
508
.
37.
Kim
,
H.
,
Han
,
B.
,
Choo
,
J.
, and
Cho
,
J.
,
2008
, “
Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries
,”
Angew. Chemie - Int. Ed.
,
47
(
52
), pp.
10151
10154
.
38.
Ko
,
M.
,
Chae
,
S.
,
Ma
,
J.
,
Kim
,
N.
,
Lee
,
H. W.
,
Cui
,
Y.
, and
Cho
,
J.
,
2016
, “
Scalable Synthesis of Silicon-Nanolayer-Embedded Graphite for High-Energy Lithium-Ion Batteries
,”
Nat. Energy
,
1
(
9
), p.
16113
.
39.
Xiao
,
Y.
,
Cao
,
M.
,
Ren
,
L.
, and
Hu
,
C.
,
2012
, “
Hierarchically Porous Germanium-Modified Carbon Materials With Enhanced Lithium Storage Performance
,”
Nanoscale
,
4
(
23
), pp.
7469
7474
.
40.
Pharr
,
M.
,
Suo
,
Z.
, and
Vlassak
,
J. J.
,
2014
, “
Variation of Stress With Charging Rate Due to Strain-Rate Sensitivity of Silicon Electrodes of Li-Ion Batteries
,”
J. Power Sources
,
270
, pp.
569
575
.
41.
Verbrugge
,
M. W.
, and
Koch
,
B. J.
,
1996
, “
Modeling Lithium Intercalation of Single-Fiber Carbon Microelectrodes
,”
J. Electrochem. Soc.
,
143
(
2
), pp.
600
608
.
42.
Bucci
,
G.
,
Nadimpalli
,
S. P. V.
,
Sethuraman
,
V. A.
,
Bower
,
A. F.
, and
Guduru
,
P. R.
,
2014
, “
Measurement and Modeling of the Mechanical and Electrochemical Response of Amorphous Si Thin Film Electrodes During Cyclic Lithiation
,”
J. Mech. Phys. Solids
,
62
(
1
), pp.
276
294
.
43.
Sethuraman
,
V. A.
,
Srinivasan
,
V.
,
Bower
,
A. F.
, and
Guduru
,
P. R.
,
2010
, “
In Situ Measurements of Stress-Potential Coupling in Lithiated Silicon
,”
J. Electrochem. Soc.
,
157
(
11
), p.
A1253
.
44.
Bower
,
A. F.
,
Guduru
,
P. R.
, and
Sethuraman
,
V. A.
,
2011
, “
A Finite Strain Model of Stress, Diffusion, Plastic Flow, and Electrochemical Reactions in a Lithium-Ion Half-Cell
,”
J. Mech. Phys. Solids
,
59
(
4
), pp.
804
828
.
45.
Lu
,
B.
,
Song
,
Y.
,
Zhang
,
Q.
,
Pan
,
J.
,
Cheng
,
Y. T.
, and
Zhang
,
J.
,
2016
, “
Voltage Hysteresis of Lithium Ion Batteries Caused by Mechanical Stress
,”
Phys. Chem. Chem. Phys.
,
18
(
6
), pp.
4721
4727
.
46.
Ganser
,
M.
,
Soc
,
J. E.
,
Ganser
,
M.
,
Hildebrand
,
F. E.
,
Klinsmann
,
M.
,
Hanauer
,
M.
,
Kamlah
,
M.
, and
Mcmeeking
,
R. M.
,
2019
, “
An Extended Formulation of Butler-Volmer Electrochemical Reaction Kinetics Including the Influence of Mechanics an Extended Formulation of Butler-Volmer Electrochemical Reaction Kinetics Including the Influence of Mechanics
,”
J. Electrochem. Soc.
,
166
(
4
), pp.
H167
H176
.
47.
Xu
,
R.
,
Yang
,
Y.
,
Yin
,
F.
,
Liu
,
P.
,
Cloetens
,
P.
,
Liu
,
Y.
,
Lin
,
F.
, and
Zhao
,
K.
,
2019
, “
Heterogeneous Damage in Li-Ion Batteries: Experimental Analysis and Theoretical Modeling
,”
J. Mech. Phys. Solids
,
129
, pp.
160
183
.
48.
Liu
,
P.
,
Xu
,
R.
,
Liu
,
Y.
,
Lin
,
F.
, and
Zhao
,
K.
,
2020
, “
Computational Modeling of Heterogeneity of Stress, Charge, and Cyclic Damage in Composite Electrodes of Li-Ion Batteries
,”
J. Electrochem. Soc.
,
167
(
4
), p.
040527
.
49.
Xu
,
R.
,
de Vasconcelos
,
L. S.
, and
Zhao
,
K.
,
2016
, “
Computational Analysis of Chemomechanical Behaviors of Composite Electrodes in Li-Ion Batteries
,”
J. Mater. Res.
,
31
(
18
), pp.
2715
2727
.
50.
Smith
,
M.
,
García
,
R. E.
, and
Horn
,
Q. C.
,
2009
, “
The Effect of Microstructure on the Galvanostatic Discharge of Graphite Anode Electrodes in LiCoO2-Based Rocking-Chair Rechargeable Batteries
,”
J. Electrochem. Soc.
,
156
(
11
), p.
A896
.
51.
Trembacki
,
B. L.
,
Noble
,
D. R.
,
Brunini
,
V. E.
,
Ferraro
,
M. E.
, and
Roberts
,
S. A.
,
2017
, “
Mesoscale Effective Property Simulations Incorporating Conductive Binder
,”
J. Electrochem. Soc.
,
164
(
11
), pp.
E3613
E3626
.
52.
Trembacki
,
B. L.
,
Mistry
,
A. N.
,
Noble
,
D. R.
,
Ferraro
,
M. E.
,
Mukherjee
,
P. P.
, and
Roberts
,
S. A.
,
2018
, “
Mesoscale Analysis of Conductive Binder Domain Morphology in Lithium-Ion Battery Electrodes
,”
J. Electrochem. Soc.
,
165
(
13
), pp.
E725
E736
.
53.
Trembacki
,
B. L.
,
Noble
,
D. R.
,
Ferraro
,
M. E.
, and
Roberts
,
S. A.
,
2020
, “
Mesoscale Effects of Composition and Calendering in Lithium-Ion Battery Composite Electrodes
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
4
), p.
041001
.
54.
Srivastava
,
I.
,
Bolintineanu
,
D. S.
,
Lechman
,
J. B.
, and
Roberts
,
S. A.
,
2019
, “
Controlling Binder Adhesion to Impact Electrode Mesostructure and Transport
,”
ACS Appl. Mater. Interfaces
,
12
(
31
), pp.
34919
34930
.
55.
Ferraro
,
M. E.
,
Trembacki
,
B. L.
,
Brunini
,
V. E.
,
Noble
,
D. R.
, and
Roberts
,
S. A.
,
2020
, “
Electrode Mesoscale as a Collection of Particles: Coupled Electrochemical and Mechanical Analysis of NMC Cathodes
,”
J. Electrochem. Soc.
,
167
(
1
), p.
013543
.
56.
Wang
,
M.
,
Xiao
,
X.
, and
Huang
,
X.
,
2017
, “
A Multiphysics Microstructure-Resolved Model for Silicon Anode Lithium-Ion Batteries
,”
J. Power Sources
,
348
, pp.
66
79
.
57.
Gao
,
X.
,
Lu
,
W.
, and
Xu
,
J.
,
2020
, “
Modeling Framework for Multiphysics-Multiscale Behavior of Si–C Composite Anode
,”
J. Power Sources
,
449
, p.
227501
.
58.
Liu
,
B.
,
Jia
,
Y.
,
Li
,
J.
,
Jiang
,
H.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Multiphysics Coupled Computational Model for Commercialized Si/Graphite Composite Anode
,”
J. Power Sources
,
450
, p.
227667
.
59.
Fuller
,
T. F.
,
Doyle
,
M.
, and
Newman
,
J.
,
1994
, “
Simulation and Optimization of the Dual Lithium Ion Insertion Cell
,”
J. Electrochem. Soc.
,
141
(
1
), pp.
1
10
.
60.
Newman
,
J.
, and
Thomas-Alyea
,
K. E.
,
2004
,
Electrochemical Systems
,
John Wiley and Sons
,
Hoboken, NJ
.
61.
Hamann
,
C. H.
,
Hamnett
,
A.
, and
Vielstich
,
W.
,
2007
,
Electrochemistry
,
Wiley-VCH
,
Weinheim
.
62.
Larché
,
F. C.
, and
Cahn
,
J. W.
,
1985
, “
The Interactions of Composition and Stress in Crystalline Solids
,”
Acta Metall.
,
33
(
3
), pp.
331
357
.
63.
Drozdov
,
A. D.
,
2014
, “
Viscoplastic Response of Electrode Particles in Li-Ion Batteries Driven by Insertion of Lithium
,”
Int. J. Solids Struct.
,
51
(
3–4
), pp.
690
705
.
64.
de Vasconcelos
,
L. S.
,
Xu
,
R.
, and
Zhao
,
K.
,
2017
, “
Operando Nanoindentation: A New Platform to Measure the Mechanical Properties of Electrodes During Electrochemical Reactions
,”
J. Electrochem. Soc.
,
164
(
14
), pp.
A3840
A3847
.
65.
Li
,
Y.
,
Mao
,
W.
,
Zhang
,
Q.
,
Zhang
,
K.
, and
Yang
,
F.
,
2020
, “
A Free Volume-Based Viscoplastic Model for Amorphous Silicon Electrode of Lithium-Ion Battery
,”
J. Electrochem. Soc.
,
167
(
4
), p.
040518
.
66.
Sheldon
,
B. W.
,
Soni
,
S. K.
,
Xiao
,
X.
, and
Qi
,
Y.
,
2012
, “
Stress Contributions to Solution Thermodynamics in Li-Si Alloys
,”
Electrochem. Solid-State Lett.
,
15
(
1
), pp.
9
12
.
67.
Yang
,
S.
,
Wang
,
X.
,
Yang
,
X.
,
Bai
,
Y.
,
Liu
,
Z.
,
Shu
,
H.
, and
Wei
,
Q.
,
2012
, “
Determination of the Chemical Diffusion Coefficient of Lithium Ions in Spherical Li[Ni 0.5Mn 0.3Co 0.2]O 2
,”
Electrochim. Acta
,
66
, pp.
88
93
.
68.
Zhou
,
H.
,
Xin
,
F.
,
Pei
,
B.
, and
Whittingham
,
M. S.
,
2019
, “
What Limits the Capacity of Layered Oxide Cathodes in Lithium Batteries?
,”
ACS Energy Lett.
,
4
(
8
), pp.
1902
1906
.
69.
Hong
,
C.
,
Leng
,
Q.
,
Zhu
,
J.
,
Zheng
,
S.
,
He
,
H.
,
Li
,
Y.
,
Liu
,
R.
,
Wan
,
J.
, and
Yang
,
Y.
,
2020
, “
Revealing the Correlation Between Structural Evolution and Li + Diffusion Kinetics of Nickel-Rich Cathode Materials in Li-Ion Batteries
,”
J. Mater. Chem. A
,
8
(
17
), pp.
8540
8547
.
70.
Pyun
,
S.
, and
Ryu
,
Y. G.
,
1998
, “
Lithium Transport Through Graphite Electrodes That Contain Two Stage Phases
,”
J. Power Sources
,
70
(
1
), pp.
34
39
.
71.
Persson
,
K.
,
Sethuraman
,
V. A.
,
Hardwick
,
L. J.
,
Hinuma
,
Y.
,
Meng
,
Y. S.
,
Van Der Ven
,
A.
,
Srinivasan
,
V.
,
Kostecki
,
R.
, and
Ceder
,
G.
,
2010
, “
Lithium Diffusion in Graphitic Carbon
,”
J. Phys. Chem. Lett.
,
1
(
8
), pp.
1176
1180
.
72.
Takami
,
N.
,
Satoh
,
A.
,
Hara
,
M.
, and
Ohsaki
,
T.
,
1995
, “
Structural and Kinetic Characterization of Lithium Intercalation Into Carbon Anodes for Secondary Lithium Batteries
,”
J. Electrochem. Soc.
,
142
(
2
), pp.
371
379
.
73.
Ding
,
N.
,
Xu
,
J.
,
Yao
,
Y. X.
,
Wegner
,
G.
,
Fang
,
X.
,
Chen
,
C. H.
, and
Lieberwirth
,
I.
,
2009
, “
Determination of the Diffusion Coefficient of Lithium Ions in Nano-Si
,”
Solid State Ionics
,
180
(
2–3
), pp.
222
225
.
74.
Wang
,
Z.
,
Su
,
Q.
,
Deng
,
H.
, and
Fu
,
Y.
,
2015
, “
Composition Dependence of Lithium Diffusion in Lithium Silicide: A Density Functional Theory Study
,”
ChemElectroChem
,
2
(
9
), pp.
1292
1297
.
75.
Huger
,
E.
,
Dorrer
,
L.
, and
Schmidt
,
H.
,
2018
, “
Permeation, Solubility, Diffusion and Segregation of Lithium in Amorphous Silicon Layers
,”
Chem. Mater.
,
30
(
10
), pp.
3254
3264
.
76.
Sivonxay
,
E.
,
Aykol
,
M.
, and
Persson
,
K. A.
,
2020
, “
The Lithiation Process and Li Diffusion in Amorphous SiO2 and Si From First-Principles
,”
Electrochim. Acta
,
331
, p.
135344
.
77.
Mesgarnejad
,
A.
, and
Karma
,
A.
,
2020
, “
Vulnerable Window of Yield Strength for Swelling-Driven Fracture of Phase-Transforming Battery Materials
,”
NPJ Comput. Mater.
,
6
(
1
), p.
58
.
78.
Smith
,
K.
, and
Wang
,
C. Y.
,
2006
, “
Solid-State Diffusion Limitations on Pulse Operation of a Lithium Ion Cell for Hybrid Electric Vehicles
,”
J. Power Sources
,
161
(
1
), pp.
628
639
.
79.
Xu
,
R.
, and
Zhao
,
K.
,
2016
, “
Mechanical Interactions Regulated Kinetics and Morphology of Composite Electrodes in Li-Ion Batteries
,”
Extrem. Mech. Lett.
,
8
, pp.
13
21
.
You do not currently have access to this content.