Abstract

An interface crack between single crystal silicon (SC-Si) and silicone rubber is examined. The first term of the asymptotic solution for this interface crack is derived. Mixed mode fracture tests were performed on Brazilian disk specimens at different mode mixities. Finite element analyses (FEAs) of these tests were carried out in abaqus. A cubic (anisotropic) material model is used for SC-Si. Two different material models were used for silicone rubber: a linear elastic model for the asymptotic solution and a Mooney–Rivlin (hyperelastic) model for the FEA. The FEAs showed that large deformations were relegated to a small region surrounding the crack tip. Hence, a K-dominate region exists in which linear elastic fracture mechanics (LEFM) may be used. From the FEAs of the Brazilian disk specimens, energy release rates were determined using the virtual crack closure technique (VCCT) and displacement extrapolation (DE) methods which were corroborated by J-integral values evaluated using the contour integral method. Elsewhere, it was demonstrated that properly implemented, the VCCT method may be used for interface cracks. A mixed mode failure criterion is obtained from the energy release rate data. The SC-Si failed before the interface crack propagated. Hence, the failure curve obtained in this study should be considered as a lower bound of the critical energy release rate for this material pair.

References

1.
Xu
,
S.
,
Yan
,
Z.
,
Jang
,
K.-I.
,
Huang
,
W.
,
Fu
,
H.
,
Kim
,
J.
,
Wei
,
Z.
,
Flavin
,
M.
,
McCracken
,
J.
,
Wang
,
R.
, and
Badea
,
A.
,
2015
, “
Assembly of Micro/Nanomaterials Into Complex, Three-Dimensional Architectures by Compressive Buckling
,”
Science
,
347
(
6218
), pp.
154
159
. 10.1126/science.1260960
2.
Zhang
,
Y.
,
Yan
,
Z.
,
Nan
,
K.
,
Xiao
,
D.
,
Liu
,
Y.
,
Luan
,
H.
,
Fu
,
H.
,
Wang
,
X.
,
Yang
,
Q.
,
Wang
,
J.
, and
Ren
,
W.
,
2015
, “
A Mechanically Driven Form of Kirigami As a Route to 3D Mesostructures in Micro/Nanomembranes
,”
Proc. Natl Am. Sci.
,
112
(
38
), pp.
11757
11764
. 10.1073/pnas.1515602112
3.
Yan
,
Z.
,
Zhang
,
F.
,
Liu
,
F.
,
Han
,
M.
,
Ou
,
D.
,
Liu
,
Y.
,
Lin
,
Q.
,
Guo
,
X.
,
Fu
,
H.
,
Xie
,
Z.
, and
Gao
,
M.
,
2016
, “
Mechanical Assembly of Complex, 3D Mesostructures From Releasable Multilayers of Advanced Materials
,”
Sci. Adv.
,
2
(
9
), p.
e1601014
. 10.1126/sciadv.1601014
4.
Liu
,
Y.
,
Genzer
,
J.
, and
Dickey
,
M. D.
,
2016
, “
‘2D Or Not 2D’: Shape-Programming Polymer Sheets
,”
Prog. Polym. Sci.
,
52
, pp.
79
106
. 10.1016/j.progpolymsci.2015.09.001
5.
Liechti
,
K. M.
, and
Chai
,
Y.-S.
,
1991
, “
Biaxial Loading Experiments for Determining Interfacial Fracture Toughness
,”
ASME J. Appl. Mech.
,
58
(
3
), pp.
680
687
. 10.1115/1.2897248
6.
Thurston
,
M.
, and
Zehnder
,
A.
,
1993
, “
Experimental Determination of Silica/Copper Interfacial Toughness
,”
Acta Metall. Mater.
,
41
(
10
), pp.
2985
2992
. 10.1016/0956-7151(93)90113-7
7.
Ryoji
,
Y.
,
Jin-Qiao
,
L.
,
Jin-Quan
,
X.
,
Toshiaki
,
O.
, and
Tomoyoshi
,
O.
,
1994
, “
Mixed Mode Fracture Criteria for An Interface Crack
,”
Eng. Fract. Mech.
,
47
(
3
), pp.
367
377
. 10.1016/0013-7944(94)90094-9
8.
Ikeda
,
T.
,
Miyazaki
,
N.
, and
Soda
,
T.
,
1998
, “
Mixed Mode Fracture Criterion of Interface Crack Between Dissimilar Materials
,”
Eng. Fract. Mech.
,
59
(
6
), pp.
725
735
. 10.1016/S0013-7944(97)00177-X
9.
Banks-Sills
,
L.
,
Travitzky
,
N.
,
Ashkenazi
,
D.
, and
Eliasi
,
R.
,
1999
, “
A Methodology for Measuring Interface Fracture Properties of Composite Materials
,”
Int. J. Fract.
,
99
(
3
), pp.
143
161
. 10.1023/A:1018642200610
10.
Banks-Sills
,
L.
,
Travitzky
,
N.
, and
Ashkenazi
,
D.
,
2000
, “
Interface Fracture Properties of a Bimaterial Ceramic Composite
,”
Mech. Mater.
,
32
(
12
), pp.
711
722
. 10.1016/S0167-6636(00)00042-9
11.
Tang
,
S.
, and
Zehnder
,
A. T.
,
2002
, “
Nickel-Alumina Interfacial Fracture Toughness Using the Thick Foil Technique
,”
Eng. Fract. Mech.
,
69
(
6
), pp.
701
715
. 10.1016/S0013-7944(01)00094-7
12.
Xiao
,
F.
,
Hui
,
C.-Y.
, and
Kramer
,
E.
,
1993
, “
Analysis of a Mixed Mode Fracture Specimen: the Asymmetric Double Cantilever Beam
,”
J. Mater. Sci.
,
28
(
20
), pp.
5620
5629
. 10.1007/BF00367838
13.
Davidson
,
B. D.
, and
Sundararaman
,
V.
,
1996
, “
A Single Leg Bending Test for Interfacial Fracture Toughness Determination
,”
Int. J. Fract.
,
78
(
2
), pp.
193
210
. 10.1007/BF00034525
14.
Banks-Sills
,
L.
,
Ishbir
,
C.
,
Fourman
,
V.
,
Rogel
,
L.
, and
Eliasi
,
R.
,
2013
, “
Interface Fracture Toughness of a Multi-directional Woven Composite
,”
Int. J. Fract.
,
182
(
2
), pp.
187
207
. 10.1007/s10704-013-9868-6
15.
Simon
,
I.
,
Banks-Sills
,
L.
, and
Fourman
,
V.
,
2017
, “
Mode I Delamination Propagation and R-ratio Effects in Woven Composite DCB Specimens for a Multi-Directional Layup
,”
Int. J. Fract.
,
96
, pp.
237
251
.
16.
Chocron
,
T.
, and
Banks-Sills
,
L.
,
2019
, “
Nearly Mode I Fracture Toughness and Fatigue Delamination Propagation in a Multidirectional Laminate Fabricated by a Wet-layup
,”
Phys. Mesomech.
,
22
(
2
), pp.
107
140
. 10.1134/S1029959919020036
17.
Wang
,
J.-S.
, and
Suo
,
Z.
,
1990
, “
Experimental Determination of Interfacial Toughness Curves Using Brazil-Nut-sandwiches
,”
Acta Metall. Mater.
,
38
(
7
), pp.
1279
1290
. 10.1016/0956-7151(90)90200-Z
18.
Wang
,
J.-S.
,
1995
, “
Interfacial Fracture Toughness of a Copper/Alumina System and the Effect of the Loading Phase Angle
,”
Mech. Mater.
,
20
(
3
), pp.
251
259
. 10.1016/0167-6636(94)00063-8
19.
Banks-Sills
,
L.
,
Boniface
,
V.
, and
Eliasi
,
R.
,
2005
, “
Development of a Methodology for Determination of Interface Fracture Toughness of Laminate Composites—the 0°/90° Pair
,”
Int. J. Solids Struct.
,
42
(
2
), pp.
663
680
. 10.1016/j.ijsolstr.2004.06.025
20.
Banks-Sills
,
L.
,
Freed
,
Y.
,
Eliasi
,
R.
, and
Fourman
,
V.
,
2006
, “
Fracture Toughness of the +45°/ − 45° Interface of a Laminate Composite
,”
Int. J. Fract.
,
141
(
1–2
), pp.
195
210
. 10.1007/s10704-006-0084-5
21.
Sarris
,
E.
,
Agioutantis
,
Z.
,
Kaklis
,
K.
, and
Kourkoulis
,
S.
,
2007
, “Numerical Simulation of the Cracked Brazilian Disc Under Diametral Compression,” In
Bifurcations, Instabilities, Degradation in Geomechanics
,
Vardoulakis
,
I. G.
, and
Exadaktylos
,
G.
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
403
430
.
22.
Vicentini
,
D.
,
Barroso
,
A.
,
Justo
,
J.
,
Mantič
,
V.
, and
París
,
F.
,
2012
, “
Determination of Generalized Fracture Toughness in Composite Multimaterial Closed Corners With Two Singular Terms—Part II: Experimental Results
,”
Eng. Fract. Mech.
,
89
, pp.
15
23
. 10.1016/j.engfracmech.2012.02.017
23.
Carneiro
,
F.
,
1943
, “
A New Method to Determine the Tensile Strength of Concrete
,” In
Proceedings of the Fifth Meeting of the Brazilian Association for Technical Rules
, Third Section, Vol.
3
, No.
16
, pp.
126
129
.
Portuguese
.
24.
Atkinson
,
C.
,
Smelser
,
R.
, and
Sanchez
,
J.
,
1982
, “
Combined Mode Fracture Via the Cracked Brazilian Disk Test
,”
Int. J. Fract.
,
18
(
4
), pp.
279
291
.
25.
Chan
,
S.
,
Tuba
,
I.
, and
Wilson
,
W.
,
1970
, “
On the Finite Element Method in Linear Fracture Mechanics
,”
Eng. Fract. Mech.
,
2
(
1
), pp.
1
17
. 10.1016/0013-7944(70)90026-3
26.
Ryoji
,
Y.
, and
Sang-Bong
,
C.
,
1989
, “
Efficient Boundary Element Analysis of Stress Intensity Factors for Interface Cracks in Dissimilar Materials
,”
Eng. Fract. Mech.
,
34
(
1
), pp.
179
188
. 10.1016/0013-7944(89)90251-8
27.
Shi
,
X.
,
Zhang
,
X.
, and
Pang
,
J.
,
2006
, “
Determination of Interface Fracture Toughness of Adhesive Joint Subjected to Mixed-Mode Loading Using Finite Element Method
,”
Int. J. Adhes. Adhes.
,
26
(
4
), pp.
249
260
. 10.1016/j.ijadhadh.2005.02.007
28.
Østergaard
,
R. C.
,
Sørensen
,
B. F.
, and
Brøndsted
,
P.
,
2007
, “
Measurement of Interface Fracture Toughness of Sandwich Structures Under Mixed Mode Loadings
,”
J. Sandw. Struct. Mater.
,
9
(
5
), pp.
445
466
. 10.1177/1099636207070578
29.
Rybicki
,
E. F.
, and
Kanninen
,
M. F.
,
1977
, “
A Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral
,”
Eng. Fract. Mech.
,
9
(
4
), pp.
931
938
. 10.1016/0013-7944(77)90013-3
30.
Banks-Sills
,
L.
, and
Farkash
,
E.
,
2016
, “
A Note on the Virtual Crack Closure Technique for a Bimaterial Interface Crack
,”
Int. J. Fract.
,
201
(
2
), pp.
171
180
. 10.1007/s10704-016-0120-z
31.
Farkash
,
E.
, and
Banks-Sills
,
L.
,
2017
, “
Virtual Crack Closure Technique for An Interface Crack Between Two Transversely Isotropic Materials
,”
Int. J. Fract.
,
205
(
2
), pp.
189
202
. 10.1007/s10704-017-0190-6
32.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
. 10.1115/1.3601206
33.
Benzeggagh
,
M. L.
, and
Kenane
,
M.
,
1996
, “
Measurement of Mixed-mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites With Mixed-Mode Bending Apparatus
,”
Compos. Sci. Technol.
,
56
(
4
), pp.
439
449
. 10.1016/0266-3538(96)00005-X
34.
Xu
,
S.
,
Zhang
,
Y.
,
Jia
,
L.
,
Mathewson
,
K. E.
,
Jang
,
K.-I.
,
Kim
,
J.
,
Fu
,
H.
,
Huang
,
X.
,
Chava
,
P.
,
Wang
,
R.
, and
Bhole
,
S.
,
2014
, “
Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin
,”
Sci.
,
344
(
6179
), pp.
70
74
. 10.1126/science.1250169
35.
Luan
,
H.
,
2017
,
personal communication
.
36.
Wortman
,
J.
, and
Evans
,
R.
,
1965
, “
Young’s Modulus, Shear Modulus, and Poisson’s Ratio in Silicon and Germanium
,”
J. Appl. Phys.
,
36
(
1
), pp.
153
156
. 10.1063/1.1713863
37.
Jamshidian
,
M.
,
Tehrany
,
E. A.
,
Imran
,
M.
,
Jacquot
,
M.
, and
Desobry
,
S.
,
2010
, “
Poly-lactic Acid: Production, Applications, Nanocomposites, and Release Studies
,”
Compr. Rev. Food. Sci. F.
,
9
(
5
), pp.
552
571
. 10.1111/j.1541-4337.2010.00126.x
38.
Ting
,
T. C.
,
1996
,
Anisotropic Elasticity: Theory and Applications
,
Oxford University Press
,
Oxford
.
39.
Knowles
,
J.
, and
Sternberg
,
E.
,
1983
, “
Large Deformations Near a Tip of An Interface-crack Between Two Neo-hookean Sheets
,”
J. Elast.
,
13
(
3
), pp.
257
293
. 10.1007/BF00042997
40.
Geubelle
,
P. H.
, and
Knauss
,
W. G.
,
1994
, “
Finite Strains At the Tip of a Crack in a Sheet of Hyperelastic Material: III. General Bimaterial Case
,”
J. Elast.
,
35
(
1–3
), pp.
139
174
. 10.1007/BF00115541
41.
Seibert
,
D.
, and
Schoche
,
N.
,
2000
, “
Direct Comparison of Some Recent Rubber Elasticity Models
,”
Rubber Chem. Technol.
,
73
(
2
), pp.
366
384
. 10.5254/1.3547597
42.
Stroh
,
A.
,
1958
, “
Dislocations and Cracks in Anisotropic Elasticity
,”
Philo. Mag.
,
3
(
30
), pp.
625
646
. 10.1080/14786435808565804
43.
Lekhnitskii
,
S. G.
,
1950
,
Theory of Elasticity of An Anisotropic Body
,
Holden-Day
,
San Francisco, 1963
,
in Russian. Translated by P. Fern, in English
.
44.
Banks-Sills
,
L.
,
2018
,
Interface Fracture and Delaminations in Composite Materials
,
Springer
,
Cham, Switzerland
.
45.
Farkash
,
E.
,
2019
,
personal communication
.
46.
Abaqus/CAE 2020
.
Dassault Systémes Simulia Corp
.,
Johnston, RI
.
47.
Farkash
,
E.
, and
Banks-Sills
,
L.
,
2020
, “
Quarter-point Elements are Unnecessary for the VCCT
,”
ASME J. Appl. Mech.
,
87
(
8
), p.
081009
. 10.1115/1.4047084
48.
Microsoft Excel 2013
.
Microsoft Corporation
.
You do not currently have access to this content.