Abstract

The analysis of complex blast scenarios typically requires advanced computational methods such as multi-material Eulerian and coupled Eulerian–Lagrangian (CEL) analysis where Jones–Wilkins–Lee (JWL) equation of state is used to model the explosive material. While multiple sets of empirical JWL parameters for trinitrotoluene (TNT) explosives have been published over the past few decades, there is also a lack of guidelines and comparative studies on their applications for the blast analysis. A standardized description of the explosive material behavior allows for a better interpretation of results from research studies involving different blast scenarios and JWL parameters. In this paper, the authors utilize numerical finite element (FE) simulations to investigate the influence of different TNT JWL parameter sets on the blast wave characteristics of a free-air blast across different scaled distances. Utilizing multi-material Eulerian analysis, a series of spherical free-air blasts involving a 100-kg TNT charge modeled with different TNT JWL parameters are conducted. The blast wave characteristics including the incident overpressure, impulse, and time of arrival (TOA) are benchmarked against the empirical-based Kingery–Bulmash air blast formulations through the conventional weapon effect calculator conwep. It was found that the incident overpressure and impulse are highly sensitive to the JWL parameters, with differences as high as 40% at smaller scaled distances, while the influence on TOA is much less significant. This paper hopes to provide a guide for future users on the appropriate JWL parameter sets to model the air blast events involving TNT explosives.

References

1.
National Consortium for the Study of Terrorism and Responses to Terrorism)
,
2017
,
Annex of Statistical Information: Country Reports on Terrorism 2016
.
2.
Kingery
,
C. N.
, and
Bulmash
,
G.
,
1984
,
Airblast Parameters From TNT Spherical Air Bursts and Hemispherical Surface Bursts—ARBRL-TR-02555
.
3.
DoD, U. S.
,
2008
,
Unified Facilities Criteria (UFC) 3-340-02: Structures To Resist the Effects of Accidental
.
4.
USACE
.,
1990
, “
TM 5-1300: Structures to Resist the Effects of Accidental Explosions
.”
5.
Hyde
,
D. W.
,
1988
,
User’s Guide for Microcomputer Programs CONWEP and FUNPRO
.
6.
Lee
,
E. L.
,
Hornig
,
H. C.
, and
Kury
,
J. W.
,
1968
, “
Adiabatic Expansion Of High Explosive Detonation Products
,”
Technical Report LLNL, UCRL-50422
,
Livermore, CA
.
7.
Tai
,
Y. S.
,
Chu
,
T. L.
,
Hu
,
H. T.
, and
Wu
,
J. Y.
,
2011
, “
Dynamic Response of a Reinforced Concrete Slab Subjected to Air Blast Load
,”
Theor. Appl. Fract. Mech.
,
56
(
3
), pp.
140
147
. 10.1016/j.tafmec.2011.11.002
8.
Shin
,
J.
,
Whittaker
,
A. S.
,
Cormie
,
D.
, and
Wilkinson
,
W.
,
2014
, “
Numerical Modeling of Close-in Detonations of High Explosives
,”
Eng. Struct.
,
81
, pp.
88
97
. 10.1016/j.engstruct.2014.09.022
9.
Chafi
,
M. S.
,
Karami
,
G.
, and
Ziejewski
,
M.
,
2009
, “
Numerical Analysis of Blast-Induced Wave Propagation Using FSI and ALEmulti-Material Formulations
,”
Int. J. Impact Eng.
,
36
(
10–11
), pp.
1269
1275
. 10.1016/j.ijimpeng.2009.03.007
10.
Yan
,
B.
,
Liu
,
F.
,
Song
,
D.
, and
Jiang
,
Z.
,
2015
, “
Numerical Study on Damage Mechanism of RC Beams Under Close-in Blast Loading
,”
Eng. Fail. Anal.
,
51
, pp.
9
19
. 10.1016/j.engfailanal.2015.02.007
11.
Cui
,
J.
,
Shi
,
Y.
,
Li
,
Z.-X.
, and
Chen
,
L.
,
2015
, “
Failure Analysis and Damage Assessment of RC Columns Under Close-In Explosions
,”
J. Perform. Constr. Facil.
,
29
(
5
), p.
B4015003
.
12.
Graswald
,
M.
,
Brown
,
R. E.
,
Sinibaldi
,
J. O.
,
Nolte
,
T.
, and
Rothe
,
H.
,
2010
, “
Vulnerability of Mortar Projectiles by Intercepting Fragmentation Warheads
,”
ASME J. Appl. Mech.
,
77
(
5
), p.
051804
. 10.1115/1.4001713
13.
Zhang
,
Z. F.
,
Wang
,
C.
,
Wang
,
L. K.
,
Zhang
,
A. M.
, and
Silberschmidt
,
V. V.
,
2018
, “
Underwater Explosion of Cylindrical Charge Near Plates: Analysis of Pressure Characteristics and Cavitation Effects
,”
Int. J. Impact Eng.
,
121
, pp.
91
105
. 10.1016/j.ijimpeng.2018.06.009
14.
Shin
,
Y. S.
, and
Chisum
,
J. E.
,
1997
, “
Modeling and Simulation of Underwater Shock Problems Using a Coupled Lagrangian-Eulerian Analysis Approach
,”
Shock Vib.
,
4
(
1
), pp.
1
10
. 10.1155/1997/123617
15.
Liu
,
Y.
,
Zhang
,
A. M.
,
Tian
,
Z.
, and
Wang
,
S.
,
2018
, “
Investigation of Free-Field Underwater Explosion with Eulerian Finite Element Method
,”
Ocean Eng.
,
166
, pp.
182
190
. 10.1016/j.oceaneng.2018.08.001
16.
Motley
,
M. R.
,
Young
,
Y. L.
, and
Liu
,
Z.
,
2011
, “
Three-Dimensional Underwater Shock Response of Composite Marine Structures
,”
ASME J. Appl. Mech.
,
78
(
6
), p.
061013
. 10.1115/1.4004525
17.
Bornstein
,
H.
,
Di Placido
,
S.
,
Ryan
,
S.
,
Orifici
,
A. C.
, and
Mouritz
,
A. P.
,
2019
, “
Effect of Standoff on Near-Field Blast Mitigation Provided by Water-Filled Containers
,”
ASME J. Appl. Mech.
,
86
(
7
), p.
071003
. 10.1115/1.4043258
18.
Toh
,
W.
,
Raju
,
K.
,
Yeo
,
C. H.
,
Goh
,
S. H.
, and
Tan
,
V. C.
,
2017
, “
Experimental and Numerical Analysis of Fibre-Reinforced Composite Pipes Subjected to Underground Blasts
,”
21st International Conference on Composite Materials
,
Xi'an
,
Aug. 20–25
.
19.
Tiwari
,
R.
,
Chakraborty
,
T.
, and
Matsagar
,
V.
,
2015
, “Dynamic Analysis of Twin Tunnel Subjected to Internal Blast Loading,”
Advances in Structural Engineering
,
V.
Matsagar
, ed.,
Springer
,
New Delhi
, p.
343
354
.
20.
He
,
W.
,
Chen
,
J.
, and
Guo
,
J.
,
2011
, “
Dynamic Analysis of Subway Station Subjected to Internal Blast Loading
,”
J. Cent. South Univ. Technol.
,
18
(
3
), pp.
917
924
. 10.1007/s11771-011-0781-8
21.
Wang
,
Z.
,
Lu
,
Y.
,
Hao
,
H.
, and
Chong
,
K.
,
2005
, “
A Full Coupled Numerical Analysis Approach for Buried Structures Subjected to Subsurface Blast
,”
Comput. Struct.
,
83
(
4–5
), pp.
339
356
. 10.1016/j.compstruc.2004.08.014
22.
Ambrosini
,
R. D.
, and
Luccioni
,
B. M.
,
2006
, “
Craters Produced by Explosions on the Soil Surface
,”
ASME J. Appl. Mech.
,
73
(
6
), pp.
890
900
. 10.1115/1.2173283
23.
Wang
,
Y. G.
,
Liao
,
C. C.
,
Wang
,
J. H.
, and
Wang
,
W.
,
2018
, “
Numerical Study for Dynamic Response of Marine Sediments Subjected to Underwater Explosion
,”
Ocean Eng.
,
156
, pp.
72
81
. 10.1016/j.oceaneng.2018.01.106
24.
Wang
,
Y. G.
,
Liao
,
C. C.
, and
Wang
,
J. H.
,
2018
, “
Numerical Investigation of Pore Pressure Effect on Blast-Induced Pipeline-Seabed Interaction
,”
Appl. Ocean Res.
,
77
, pp.
61
68
. 10.1016/j.apor.2018.05.012
25.
Zhu
,
J. B.
,
Li
,
Y. S.
,
Wu
,
S. Y.
,
Zhang
,
R.
, and
Ren
,
L.
,
2018
, “
Decoupled Explosion in an Underground Opening and Dynamic Responses of Surrounding Rock Masses and Structures and Induced Ground Motions: A FEM-DEM Numerical Study
,”
Tunn. Undergr. Sp. Technol.
,
82
, pp.
442
454
. 10.1016/j.tust.2018.08.057
26.
Li
,
J.
,
Wu
,
C.
,
Hao
,
H.
,
Su
,
Y.
, and
Li
,
Z. X.
,
2017
, “
A Study of Concrete Slabs With Steel Wire Mesh Reinforcement Under Close-In Explosive Loads
,”
Int. J. Impact Eng.
,
110
, pp.
242
254
. 10.1016/j.ijimpeng.2017.01.016
27.
Mussa
,
M. H.
,
Mutalib
,
A. A.
,
Hamid
,
R.
,
Naidu
,
S. R.
,
Radzi
,
N. A. M.
, and
Abedini
,
M.
,
2017
, “
Assessment of Damage to an Underground Box Tunnel by a Surface Explosion
,”
Tunn. Undergr. Sp. Technol.
,
66
, pp.
64
76
. 10.1016/j.tust.2017.04.001
28.
Mokhatar
,
S.
, and
Abdullah
,
R.
,
2012
, “
Computational Analysis of Reinforced Concrete Slabs Subjected to Impact Loads
,”
Int. J. Integr. Eng.
,
4
(
2
), pp.
70
76
.
29.
Kong
,
X. S.
,
Wu
,
W. G.
,
Li
,
J.
,
Chen
,
P.
, and
Liu
,
F.
,
2014
, “
Experimental and Numerical Investigation on a Multi-Layer Protective Structure Under the Synergistic Effect of Blast and Fragment Loadings
,”
Int. J. Impact Eng.
,
65
, pp.
146
162
. 10.1016/j.ijimpeng.2013.11.009
30.
Lee
,
E.
,
Finger
,
M.
, and
Collins
,
W.
,
1973
,
JWL Equation of State Coefficients for High Explosives
,
Livermore, CA
.
31.
Chen
,
J. Y.
, and
Lien
,
F. S.
,
2018
, “
Simulations for Soil Explosion and Its Effects on Structures Using SPH Method
,”
Int. J. Impact Eng.
,
112
, pp.
41
51
. 10.1016/j.ijimpeng.2017.10.008
32.
Tao
,
W.
,
Huan
,
S.
,
Huang
,
F.
, and
Jiang
,
G.
,
2013
, “
Shock Initiation of Explosives Investigated With Small Partition Experiment and Numerical Simulation
,”
Acta Mech. Solida Sin.
,
26
(
4
), pp.
353
361
. 10.1016/S0894-9166(13)60032-4
33.
Novak
,
N.
,
Starčevič
,
L.
,
Vesenjak
,
M.
, and
Ren
,
Z.
,
2019
, “
Blast Response Study of the Sandwich Composite Panels With 3D Chiral Auxetic Core
,”
Compos. Struct.
,
210
, pp.
167
178
. 10.1016/j.compstruct.2018.11.050
34.
Lai
,
J.
,
Guo
,
X.
, and
Zhu
,
Y.
,
2015
, “
Repeated Penetration and Different Depth Explosion of Ultra-High Performance Concrete
,”
Int. J. Impact Eng.
,
84
, pp.
1
12
. 10.1016/j.ijimpeng.2015.05.006
35.
Li
,
M.
,
Zong
,
Z.
,
Hao
,
H.
,
Zhang
,
X.
,
Lin
,
J.
, and
Xie
,
G.
,
2019
, “
Experimental and Numerical Study on the Behaviour of CFDST Columns Subjected to Close-In Blast Loading
,”
Eng. Struct.
,
185
, pp.
203
220
. 10.1016/j.engstruct.2019.01.116
36.
Dobratz
,
B. M.
, and
Crawford
,
P. C.
,
1985
,
LLNL Explosives Handbook: Properties of Chemical Explosi and Explosive Stimulants
,
Lawrence Livermore National Laboratory
,
California
.
37.
Souers
,
P. C.
, and
Kury
,
J. W.
,
1993
, “
Comparison of Cylinder Data and Code Calculations for Homogeneous Explosives
,”
Propellants, Explos. Pyrotech
,
18
(
4
), pp.
175
183
. 10.1002/prep.199300002
38.
Souers
,
P.
,
Wu
,
B.
, and
Haselman
,
L. C. J.
,
1995
,
Detonation Equation of State at LLNL, 1995. Revision 3.
,
Lawrence Livermore National Lab
,
California
.
39.
Kury
,
J. W.
,
Breithaupt
,
R. D.
, and
Tarver
,
C. M.
,
1999
, “
Detonation Waves in Trinitrotoluene
,”
Shock Waves
,
9
(
4
), pp.
227
237
. 10.1007/s001930050160
40.
Dewey
,
J. M.
,
2018
, “The Friedlander Equations,”
Blast Effects: Physical Properties of Shock Waves
,
I.
Sochet
, ed.,
Springer International Publishing
,
Cham
, pp.
37
55
.
41.
Friedlander
,
F. G.
,
1946
, “
The Diffraction of Sound Pulses I. Diffraction by a Semi-Infinite Plane
,”
Proc. R. Soc. London. Ser. A. Math. Phys. Sci.
,
186
(
1006
), pp.
322
344
.
42.
Sielicki
,
P. W.
,
Rigby
,
S. E.
, and
Sumelka
,
W.
,
2015
, “
Numerical Predictions of the Negative Phase
,”
5th International Conference on Design and Analysis of Protective Structures
,
Singapore
,
May 19–21
.
43.
Hopkinson
,
B.
,
1915
, “
British Ordnance Board Minutes No. 13565
.,” p.
220
.
44.
Cranz
,
C.
,
1926
,
Lehrbuch der Ballistik
,
Verlag von Julius Springer
,
Berlin
.
45.
Brode
,
H. L.
,
1955
, “
Numerical Solutions of Spherical Blast Waves
,”
J. Appl. Phys.
,
26
(
6
), pp.
766
775
. 10.1063/1.1722085
46.
Baker
,
W. E.
,
1974
,
‌Engineering Design Handbook–‌Explosions in Air. Part One.
,
U.S. Army Material Command
.
47.
Kinney
,
G. F.
, and
Graham
,
K. J.
,
1985
,
Explosive Shocks in Air
,
Springer
,
Berlin
.
48.
Kingery
,
C. N.
,
1966
,
Air Blast Parameters versus Distance for Hemispherical TNT Surface Bursts
,
No. BRL-1344
,
Army Ballistic Research Lab
,
Aberdeen Proving Ground, MD
.
49.
Swisdak
,
M. M.
,
1944
,
Simplified Kingery Airblast Calculations
,
Naval Surface Warfare Center Indian Head Div
,
MD
.
50.
Jeon
,
D.
,
Kim
,
K.
, and
Han
,
S.
,
2017
, “
Modified Equation of Shock Wave Parameters
,”
Computation
,
5
(
3
), p.
41
. 10.3390/computation5030041
51.
Dixon
,
J. C.
,
2007
,
Appendix B Properties of the Air : The Shock Absorber Handbook
, 2nd ed,
John Wiley Sons, Ltd
.,
New York
, pp.
1
3
.
52.
Sherkar
,
P.
,
Whittaker
,
A. S.
, and
Aref
,
A. J.
,
2010
, “
Modeling the Effects of Detonations of High Explosives to Inform Blast-Resistant Design By
,”
MCEER Tech. Reports
,
10
(
0009
), p.
188
.
53.
Liu
,
J.
,
Xu
,
C.
,
Han
,
X.
,
Jiang
,
C.
, and
Liu
,
G.
,
2016
, “
Determination of the State Parameters of Explosive Detonation Products by Computational Inverse Method
,”
Inverse Probl. Sci. Eng.
,
24
(
1
), pp.
22
41
. 10.1080/17415977.2014.993981
54.
Dassault Systèmes
,
ABAQUS 2016 User’s Manual
.
55.
Cengel
,
Y. A.
,
2003
,
Heat Transfer: A Practical Approach
,
McGraw-Hill
,
Boston
.
56.
Lemmon
,
E. W.
,
Jacobsen
,
R. T.
,
Penoncello
,
S. G.
, and
Friend
,
D. G.
,
2000
, “
Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon, and Oxygen From 60 to 2000K at Pressures to 2000MPa
,”
J. Phys. Chem. Ref. Data
,
29
(
3
), pp.
331
385
. 10.1063/1.1285884
57.
Keenan
,
J. H.
,
Kaye
,
J.
, and
Chao
,
J.
,
1983
,
Gas Tables: S.I.Units: Thermodynamic Properties of Air Products of Combustion and Component Gases, Compressible Flow Functions
, 2nd ed.,
John Wiley & Sons Inc
.
58.
Elek
,
P. M.
,
Džngalašević
,
V. V.
,
Jaramaz
,
S. S.
, and
Micković
,
D. M.
,
2015
, “
Determination of Detonation Products Equation of State From Cylinder Test: Analytical Model and Numerical Analysis
,”
Therm. Sci.
,
19
(
1
), pp.
35
48
. 10.2298/TSCI121029138E
59.
Zapata
,
B. J.
, and
Weggel
,
D. C.
,
2012
, “
A Study of the JWL Equation of State Parameters of Dynamite for Use in Airblast Models
,”
Sci. Eng.
,
60
, p.
12
.
60.
Jablonski
,
J.
,
Carlucci
,
P.
,
Thyagarajan
,
R.
,
Nandi
,
B.
, and
Arata
,
J.
,
2012
, “
Simulating Underbelly Blast Events Using Abaqus/Explicit -CEL
,” p.
14
.
61.
Lan
,
I.-F.
,
Hung
,
S.-C.
,
Chen
,
C.-Y.
,
Niu
,
Y.-M.
, and
Shiuan
,
J.-H.
,
1993
, “
An Improved Simple Method of Deducing JWL Parameters From Cylinder Expansion Test
,”
Propellants, Explos. Pyrotech
,
18
(
1
), pp.
18
24
. 10.1002/prep.19930180104
62.
Sutton
,
B. D.
,
Ferguson
,
J. W.
, and
Hodgson
,
A. N.
,
2017
, “
An Analytical Approach to Obtaining JWL Parameters From Cylinder Tests
,”
AIP Conf. Proc.
,
030032
(
101
), pp.
20003
50001
.
63.
Karlos
,
V.
,
Solomos
,
G.
, and
Larcher
,
M.
,
2016
, “
Analysis of the Blast Wave Decay Coefficient Using the Kingery–Bulmash Data
,”
Int. J. Prot. Struct.
,
7
(
3
), pp.
409
429
. 10.1177/2041419616659572
You do not currently have access to this content.