Abstract

Varying compliance (VC) is an inevitable parametrical excitation to rolling bearing systems due to time-varying stiffness from rolling element revolution. Period-doubling instability in the VC primary resonances of ball bearing is presented in many studies. Recently, this instability was demonstrated to be a probable indicator of occurrence of strong one to two internal resonances and chaotic motions, which has potential effects on the stability and safety of the bearing-rotor system. However, few studies have directly attempted to suppress this bifurcation instability. Here, a dynamic stiffness evaluating method is presented for assessing the threshold of the period-doubling and complex motions in VC primary resonances of ball bearings, where the elaborate evolution of the bifurcating process is obtained by harmonic balance and alternating frequency/time domain (HB-AFT) method and using Floquet theory. Our analysis indicates that by introducing certain additional stiffness, the period-doubling and corresponding subharmonic internal resonances can be suppressed. Besides, the evolution and mechanism of type I intermittency chaos in ball bearings will be clarified in depth. It is also shown that extensive chaotic motions for large bearing clearances (e.g., 40 μm) can vanish perfectly by action of additional stiffness.

References

1.
Harris
,
T. A.
,
2001
,
Rolling Bearing Analysis
, 4th ed.,
John Wiley & Sons
,
New York
.
2.
Vance
,
J. M.
, and
Zeidan
,
F. Y.
,
2010
,
Machinery Vibration and Rotordynamics
,
John Wiley & Sons
,
New Jersey
.
3.
Junnami
,
O.
,
2003
,
The Design of Ball Bearing Calculation
,
Mechanical Industry Press
,
Beijing
.
4.
Zhang
,
Z.
,
2015
, “
Bifurcation and Hysteresis of Varying Varying Compliance Vibrations of a Ball Bearing-Rotor System
,”
Ph.D. thesis
,
Harbin Institute of Technology
,
Harbin, China
.
5.
Fukata
,
S.
,
Gad
,
E. H.
,
Kondou
,
T.
,
Ayabe
,
T.
, and
Tamura
,
H.
,
1985
, “
On the Radial Vibrations of Ball Bearings (Computer Simulation)
,”
Bull. JSME
,
28
(
239
), pp.
899
904
. 10.1299/jsme1958.28.899
6.
Mevel
,
B.
, and
Guyader
,
J. L.
,
1993
, “
Routes to Chaos in Ball Bearings
,”
J. Sound Vib.
,
162
(
3
), pp.
471
487
. 10.1006/jsvi.1993.1134
7.
Mevel
,
B.
, and
Guyader
,
J. L.
,
2008
, “
Experiments on Routes to Chaos in Ball Bearings
,”
J. Sound Vib.
,
318
(
3
), pp.
549
564
. 10.1016/j.jsv.2008.04.024
8.
Tiwari
,
M.
,
Gupta
,
K.
, and
Prakash
,
O.
,
2000
, “
Effect of Radial Internal Clearance of a Ball Bearing on the Dynamics of a Balanced Horizontal Rotor
,”
J. Sound Vib.
,
238
(
5
), pp.
723
756
. 10.1006/jsvi.1999.3109
9.
Tiwari
,
M.
,
Gupta
,
K.
, and
Prakash
,
O.
,
2000
, “
Dynamic Response of an Unbalanced Rotor Supported on Ball Bearings
,”
J. Sound Vib.
,
238
(
5
), pp.
757
779
. 10.1006/jsvi.1999.3108
10.
Bai
,
C.
,
Zhang
,
H.
, and
Xu
,
Q.
,
2013
, “
Subharmonic Resonance of a Symmetric Ball Bearing-Rotor System
,”
Int. J. Non-Linear Mech.
,
50
, pp.
1
10
. 10.1016/j.ijnonlinmec.2012.11.002
11.
Cui
,
L.
,
2008
, “
Research on Dynamic Performances of High-Speed Rolling Bearing and Rotor System of Aeroengine
,”
Ph.D. thesis
,
Harbin Institute of Technology
,
Harbin, China
.
12.
Bai
,
C. Q.
,
Xu
,
Q. Y.
, and
Zhang
,
X. L.
,
2006
, “
Nonlinear Stability of Balanced Rotor Due to Effect of Ball Bearing Internal Clearance
,”
Appl. Math. Mech.
,
27
(
2
), pp.
175
186
. 10.1007/s10483-006-0205-1
13.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1995
,
Nonlinear Oscillations
,
John Wiley & Sons
,
New York
.
14.
Chen
,
Y. S.
,
2002
,
Nonlinear Dynamics
,
High Education Press
,
Beijing
.
15.
Manevich
,
A. I.
, and
Manevitch
,
L. I.
,
2003
,
Mechanics of Nonlinear Systems with Internal Resonances
,
Imperial College Press
,
New York
.
16.
Sethna
,
P. R.
, and
Bajaj
,
A. K.
,
1978
, “
Bifurcations in Dynamical Systems With Internal Resonance
,”
ASME J. Appl. Mech.
,
45
(
4
), pp.
895
902
. 10.1115/1.3424438
17.
Kyoung Lee
,
W.
, and
Dong Park
,
H.
,
1997
, “
Chaotic Dynamics of a Harmonically Excited Spring-Pendulum System With Internal Resonance
,”
Nonlinear Dyn.
,
14
(
2
), pp.
211
229
. 10.1023/A:1008256920441
18.
Abe
,
A.
,
Kobayashi
,
Y.
, and
Yamada
,
G.
,
2001
, “
One-to-One Internal Resonance of Symmetric Crossply Laminated Shallow Shells
,”
ASME J. Appl. Mech.
,
68
(
4
), pp.
640
649
. 10.1115/1.1356416
19.
Zhang
,
Z.
,
Chen
,
Y.
, and
Cao
,
Q.
,
2015
, “
Bifurcations and Hysteresis of Varying Compliance Vibrations in the Primary Parametric Resonance for a Ball Bearing
,”
J. Sound Vib.
,
350
, pp.
171
184
. 10.1016/j.jsv.2015.04.003
20.
Yozo
,
F.
,
Pennung
,
W.
, and
Pacheco
,
B. M.
,
1991
, “
Active Stiffness Control of Cable Vibration
,”
ASME J. Appl. Mech.
,
60
(
4
), pp.
948
953
.
21.
Ramaratnam
,
A.
, and
Jalili
,
N.
,
2006
, “
A Switched Stiffness Approach for Structural Vibration Control: Theory and Real-Time Implementation
,”
J. Sound Vib.
,
291
(
1–2
), pp.
258
274
. 10.1016/j.jsv.2005.06.012
22.
Rivas
,
E.
, and
Barbero
,
E.
,
2016
, “
Stiffness Control in Adaptive Thin-Walled Laminate Composite Beams
,”
Compos. Part A Appl. S.
,
80
, pp.
118
126
. 10.1016/j.compositesa.2015.10.016
23.
Yu
,
N.
,
Zou
,
W.
, and
Sun
,
Y.
,
2019
, “
Passivity Guaranteed Stiffness Control With Multiple Frequency Band Specifications for a Cable-Driven Series Elastic Actuator
,”
Mech. Syst. Signal Pr.
,
117
, pp.
709
722
. 10.1016/j.ymssp.2018.08.007
24.
While
,
M. F.
,
1979
, “
Rolling Element Bearing Vibration Transfer Characteristics: Effect of Stiffness
,”
ASME J. Appl. Mech.
,
46
(
3
), pp.
677
684
. 10.1115/1.3424626
25.
Ertas
,
B. H.
, and
Vance
,
J. M.
,
2008
, “
Effect of Static and Dynamic Misalignment on Ball Bearing Radial Stiffness
,”
J. Propul. Power
,
20
(
4
), pp.
634
647
. 10.2514/1.11462
26.
Gunduz
,
A.
, and
Singh
,
R.
,
2013
, “
Stiffness Matrix Formulation for Double Row Angular Contact Ball Bearings: Analytical Development and Validation
,”
J. Sound Vib.
,
332
(
22
), pp.
5898
5916
. 10.1016/j.jsv.2013.04.049
27.
Zhang
,
Z.
,
Rui
,
X.
,
Chen
,
Y.
,
Dong
,
W.
, and
Li
,
L.
,
2018
, “
Hysteretic Resonances and Intermittency Chaos in Ball Bearings
,”
IDETC/CIE 2018
,
ASME
,
Quebec City
, p.
V006T09A073
,
Paper No. DETC2018-86411
.
28.
Ghafari
,
S. H.
,
Abdel-Rahman
,
E. M.
,
Golnaraghi
,
F.
, and
Ismail
,
F.
,
2010
, “
Vibrations of Balanced Fault-Free Ball Bearings
,”
J. Sound Vib.
,
329
(
9
), pp.
1332
1347
. 10.1016/j.jsv.2009.11.003
29.
Zhang
,
Z. Y.
,
Chen
,
Y. S.
, and
Li
,
Z. G.
,
2015
, “
Influencing Factors of the Dynamic Hysteresis in Varying Compliance Vibrations of a Ball Bearing
,”
Sci. China Technol. Sci.
,
58
(
5
), pp.
775
782
. 10.1007/s11431-015-5808-1
30.
Yamamoto
,
T.
,
1954
, “
On the Critical Speeds of a Shaft
,”
Mem. Fac. Eng.
,
6
, pp.
160
170
.
31.
Goggin
,
D. G.
, and
Darden
,
J. M.
,
1992
, “
Limiting Critical Speed Response on the SSME Alternate High Pressure Fuelturbo-Pump (ATD HPFTP) With Bearing Deadband
,”
AIAA/SAE/ASME/ASEE 28th Joint Propulsion Conference and Exhibit
,
Nashville, TN
,
July 6–8
, p.
AIAA-92-3402
.
32.
Deng
,
S.
,
He
,
F.
,
Yang
,
H.
, and
Li
,
Y.
,
2010
, “
Analysis on Dynamic Characteristics of a Dual Rotor Rolling Bearing Coupling System for Aero-Engine
,”
J. Aerosp. Power
,
25
(
10
), pp.
2386
2394
.
33.
Hu
,
Q.
,
2011
, “
Nonlinear Dynamic Analysis and Optimization of Bearing-Rotor System
,”
Ph.D. thesis
,
Dalian University of Technology
,
Dalian, China
.
34.
Kostek
,
R.
,
2014
, “
Simulation and Analysis of Vibration of Rolling Bearing
,”
Key Eng. Mater.
,
588
, pp.
257
265
. 10.4028/www.scientific.net/KEM.588.257
35.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
2004
,
Applied Nonlinear Dynamics
,
WILEY-VCH, Verlag GmbH & Co. KGaA
,
Weinheim
.
36.
Manneville
,
P.
, and
Pomeau
,
Y.
,
1979
, “
Intermittency and the Lorenz Model
,”
Phys. Lett. A
,
75
(
1–2
), pp.
1
2
. 10.1016/0375-9601(79)90255-X
37.
Manneville
,
P.
, and
Pomeau
,
Y.
,
1980
, “
Different Ways to Turbulence in Dissipative Dynamical Systems
,”
Evolution
,
1
(
2
), pp.
219
226
. 10.1016/0167-2789(80)90013-5
38.
Elaskar
,
S
, and
Rio
,
E. D.
,
2017
,
New Advances on Chaotic Intermittency and Its Applications
,
Aviation Industry Press
,
Switzerland
.
39.
Sankaravelu
,
A.
,
Noah
,
S. T.
, and
Burger
,
C. P.
,
1994
, “Bifurcation and Chaos in Ball Bearings,”
Nonlinear and Stochastic Dynamics
,
AMD-Vol. 192/DE-Vol. 78
,
A. K.
Bajaj
,
N. S.
Namachchivaya
, and
R. A. I.
Brahim
, eds.,
ASME
,
Chicago
, pp.
313
325
.
40.
Upadhyay
,
S. H.
,
Harsha
,
S. P.
, and
Jain
,
S. C.
,
2010
, “
Analysis of Nonlinear Phenomena in High Speed Ball Bearings Due to Radial Clearance and Unbalanced Rotor Effects
,”
J. Vib. Control
,
16
(
1
), pp.
65
88
. 10.1177/1077546309104188
41.
Gao
,
S. H.
,
Long
,
X. H.
, and
Meng
,
G.
,
2008
, “
Nonlinear Response and Nonsmooth Bifurcations of an Unbalanced Machine-Tool Spindle-Bearing System
,”
Nonlinear Dyn.
,
54
(
4
), pp.
365
377
. 10.1007/s11071-008-9336-4
42.
Cameron
,
T. M.
, and
Griffin
,
J. H.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
149
154
. 10.1115/1.3176036
43.
Kim
,
Y. B.
, and
Noah
,
S. T.
,
1991
, “
Stability and Bifurcation Analysis of Oscillators With Piecewise-Linear Characteristics: A General Approach
,”
ASME J. Appl. Mech.
,
58
(
2
), pp.
545
553
. 10.1115/1.2897218
44.
Zhang
,
Z. Y.
, and
Chen
,
Y. S.
,
2014
, “
Harmonic Balance Method With Alternating Frequency/Time Domain Technique for Nonlinear Dynamical System With Fractional Exponential
,”
Appl. Math. Mech.
,
35
(
4
), pp.
423
436
. 10.1007/s10483-014-1802-9
45.
Li
,
L.
,
Zhang
,
Z.
,
Rui
,
X.
, and
Chen
,
Y.
,
2018
, “
A New Method Based on HB-AFT Algorithm for Intermittent Chaotic Vibration Studying
,”
J. Dyn. Control
,
16
(
6
), pp.
526
531
. 10.6052/1672-6553-2018-047
46.
Liew
,
A.
,
Feng
,
N.
, and
Hahn
,
E. J.
,
2002
, “
Transient Rotordynamic Modeling of Rolling Element Bearing Systems
,”
ASME J. Eng. Gas. Turbines Power
,
124
(
4
), pp.
984
991
. 10.1115/1.1479337
47.
Jin
,
Y.
,
Yang
,
R.
,
Hou
,
L.
,
Chen
,
Y.
, and
Zhang
,
Z.
,
2016
, “
Experiments and Numerical Results for Varying Compliance Contact Resonance in a Rigid Rotor-Ball Bearing System
,”
ASME J. Tribol.
,
139
(
4
), p.
041103
. 10.1115/1.4035339
48.
Rigaud
,
E.
, and
Perret-Liaudet
,
J.
,
2003
, “
Experiments and Numerical Results on Non-Linear Vibrations of an Impacting Hertzian Contact. Part 1: Harmonic Excitation
,”
J. Sound Vib.
,
265
(
2
), pp.
289
307
. 10.1016/S0022-460X(02)01262-2
49.
Gupta
,
T. C.
,
Gupta
,
K.
, and
Sehgal
,
D. K.
,
2011
, “
Instability and Chaos of a Flexible Rotor Ball Bearing System: An Investigation on the Influence of Rotating Imbalance and Bearing Clearance
,”
ASME J. Eng. Gas. Turbines Power
,
133
(
8
), p.
082501
. 10.1115/1.4002657
50.
Seydel
,
R.
,
2010
,
Practical Bifurcation and Stability Analysis
, 3rd ed.,
Springer
,
New York
.
51.
Huang
,
X. D.
,
Zeng
,
Z. G.
, and
Ma
,
Y. N.
,
2004
,
The Theory and Methods for Nonlinear Numerical Analysis
,
Wuhan University Press
,
Wuhan
.
52.
Hsu
,
C. S.
,
1972
, “
Impulsive Parametric Excitation: Theory
,”
ASME J. Appl. Mech.
,
39
(
2
), pp.
551
558
. 10.1115/1.3422715
53.
Hsu
,
C. S.
, and
Cheng
,
W. H.
,
1973
, “
Applications of the Theory of Impulsive Parametric Excitation and New Treatments of General Parametric Excitation Problems
,”
ASME J. Appl. Mech.
,
40
(
1
), pp.
78
86
. 10.1115/1.3422976
54.
Baladi
,
V.
,
Eckmann
,
J. P.
, and
Ruelle
,
D.
,
1989
, “
Resonances for Intermittent Systems
,”
Nonlinearity
,
2
(
1
), pp.
119
135
. 10.1088/0951-7715/2/1/007
55.
Kim
,
C. M.
,
Kwon
,
O. J.
,
Lee
,
E. K.
, and
Lee
,
H.
,
1994
, “
New Characteristic Relations in Type-I Intermittency
,”
Phys. Rev. Lett.
,
73
(
4
), pp.
525
528
. 10.1103/PhysRevLett.73.525
56.
Hess
,
D. P.
, and
Soom
,
A.
,
1991
, “
Normal Vibrations and Friction Under Harmonic Loads: Part I—Hertzian Contacts
,”
ASME J. Tribol
,
133
(
1
), pp.
80
86
. 10.1115/1.2920607
57.
Ma
,
Q. L.
,
Kahraman
,
A.
,
Perretliaudet
,
J.
, and
Rigaud
,
E.
,
2007
, “
An Investigation of Steady-State Dynamic Response of a Sphere-Plane Contact Interface With Contact Loss
,”
ASME J. Appl. Mech.
,
74
(
2
), pp.
249
255
. 10.1115/1.2190230
58.
Kostek
,
R.
,
2013
, “
Analysis of the Primary and Superharmonic Contact Resonances—Part 1
,”
J. Theor. App. Mech.
,
51
(
2
), pp.
249
255
.
59.
Held
,
G. A.
,
Jeffries
,
C.
, and
Haller
,
E. E.
,
1984
, “
Observation of Chaotic Behavior in an Electron-Hole Plasma in Ge
,”
Phys. Rev. Lett.
,
52
(
12
), pp.
1037
1040
. 10.1103/PhysRevLett.52.1037
60.
Kostova
,
T.
,
Ravindran
,
R.
, and
Schonbek
,
M.
,
2004
, “
Observation of Chaotic Behavior in an Electron-Hole Plasma in Ge
,”
Int. J. Bifurcat. Chaos
,
14
(
3
), pp.
913
925
. 10.1142/S0218127404009685
61.
Hao
,
B. L.
,
1989
,
Elementary Symbolic Dynamics and Chaos in Dissipative Systems
,
World Scientific
,
Singapore
.
62.
Dykman
,
M. I.
,
Golding
,
B.
, and
Ryvkine
,
D.
,
2004
, “
Critical Exponent Crossovers in Escape Near a Bifurcation Point
,”
Phys. Rev. Lett.
,
92
(
8
), p.
080602
. 10.1103/PhysRevLett.92.080602
63.
Hu
,
H. Y.
,
2000
,
Applied Nonlinear Dynamics
,
Aviation Industry Press
,
Beijing
.
64.
Balachandran
,
B.
, and
Nayfeh
,
A. H.
,
1991
, “
Observations of Modal Interactions in Resonantly Forced Beam-Mass Structures
,”
Nonlinear Dyn.
,
2
(
2
), pp.
77
117
. 10.1007/BF00053831
65.
Lee
,
C. L.
, and
Perkins
,
N. C.
,
1992
, “
Nonlinear Oscillations of Suspended Cables Containing a Two-to-One Internal Resonance
,”
Nonlinear Dyn.
,
3
(
6
), pp.
465
490
. 10.1007/bf00045648
66.
Oueini
,
S. S.
,
Nayfeh
,
A. H.
, and
Pratt
,
J. R.
,
1998
, “
A Nonlinear Vibration Absorber for Flexible Structures
,”
Nonlinear Dyn.
,
15
(
3
), pp.
259
282
. 10.1023/A:1008250524547
67.
Tournat
,
V.
,
Zaitsev
,
V.
,
Gusev
,
V.
,
Nazarov
,
V.
,
Bequin
,
P.
, and
Castagnede
,
B.
,
2004
, “
Probing Weak Forces in Granular Media Through Nonlinear Dynamic Dilatancy: Clapping Contacts and Polarization Anisotropy
,”
Phys. Rev. Lett.
,
92
(
8
), p.
085502
. 10.1103/PhysRevLett.92.085502
68.
Abdel Rahman
,
E. M.
, and
Nayfeh
,
A. H.
,
2005
, “
Contact Force Identification Using the Subharmonic Resonance of a Contact-Mode Atomic Force Microscopy
,”
Nanotechnology
,
16
(
2
), pp.
199
207
. 10.1088/0957-4484/16/2/004
69.
Tournat
,
V.
,
Gusev
,
V.
, and
Castagnede
,
B.
,
2004
, “
Subharmonics and Noise Excitation in Transmission of Acoustic Wave Through Unconsolidated Granular Medium
,”
Phys. Lett. A
,
326
(
5–6
), pp.
340
348
. 10.1016/j.physleta.2004.04.042
70.
Wolf
,
A.
,
Swift
,
J. B.
,
Swinney
,
H. L.
, and
Vastano
,
J. A.
,
1985
, “
Determining Lyapunov Exponents From a Time Series
,”
Phys. D
,
16
(
3
), pp.
285
317
. 10.1016/0167-2789(85)90011-9
You do not currently have access to this content.