Artificial periodic structures are used to control spatial and spectral properties of acoustic or elastic waves. The ability to exploit band gap structure creatively develops a new route to achieve excellently manipulated wave properties. In this study, we introduce a paradigm for a type of real-time band gap modulation technique based on parametric excitations. The longitudinal wave of one-dimensional (1D) spring-mass systems that undergo transverse periodic vibrations is investigated, in which the high-frequency vibration modes are considered as parametric excitation to provide pseudo-stiffness to the longitudinal elastic wave in the propagating direction. Both analytical and numerical methods are used to elucidate the versatility and efficiency of the proposed real-time dynamic modulating technique.

References

1.
Martinezsala
,
R.
,
Sancho
,
J.
,
Sanchez
,
J. V.
,
Gomez
,
V.
,
Llinares
,
J.
, and
Meseguer
,
F.
,
1995
, “
Sound-Attenuation by Sculpture
,”
Nature
,
378
(
6554
), p. 241.
2.
Kaina
,
N.
,
Fink
,
M.
, and
Lerosey
,
G.
,
2013
, “
Composite Media Mixing Bragg and Local Resonances for Highly Attenuating and Broad Bandgaps
,”
Sci. Rep.
,
3
(
1
), p.
3240
.
3.
Zadpoor
,
A.
,
2016
, “
Mechanical Meta-Materials
,”
Mater. Horiz.
,
3
(
5
), pp.
371
381
.
4.
Noda
,
S.
,
Chutinan
,
A.
, and
Imada
,
M.
,
2000
, “
Trapping and Emission of Photons by a Single Defect in a Photonic Bandgap Structure
,”
Nat.
,
407
(
6804
), pp.
608
610
.
5.
Qian
,
W.
,
Yu
,
Z.
,
Wang
,
X.
,
Lai
,
Y.
, and
Yellen
,
B. B.
,
2016
, “
Elastic Metamaterial Beam With Remotely Tunable Stiffness
,”
J. Appl. Phys.
,
119
(
5
), p.
055102
.
6.
Fang
,
X.
,
Wen
,
J.
,
Yin
,
J.
,
Yu
,
D.
, and
Xiao
,
Y.
,
2016
, “
Broadband and Tunable One-Dimensional Strongly Nonlinear Acoustic Metamaterials: Theoretical Study
,”
Phys. Rev. E
,
94
(
5–1
), p.
052206
.
7.
Fleury
,
R.
,
Sounas
,
D. L.
,
Sieck
,
C. F.
,
Haberman
,
M. R.
, and
Alu
,
A.
,
2014
, “
Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator
,”
Science
,
343
(
6170
), pp.
516
519
.
8.
Nassar
,
H.
,
Xu
,
X. C.
,
Norris
,
A. N.
, and
Huang
,
G. L.
,
2017
, “
Modulated Phononic Crystals: Non-Reciprocal Wave Propagation and Willis Materials
,”
J. Mech. Phys. Solids
,
101
, pp.
10
29
.
9.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
(
13
), pp.
2022
2025
.
10.
Kushwaha
,
M. S.
,
1997
, “
Stop-Bands for Periodic Metallic Rods: Sculptures That Can Filter the Noise
,”
Appl. Phys. Lett.
,
70
(
24
), pp.
3218
3220
.
11.
Susstrunk
,
R.
, and
Huber
,
S. D.
,
2015
, “
Observation of Phononic Helical Edge States in a Mechanical Topological Insulator
,”
Science
,
349
(
6243
), pp.
47
50
.
12.
Khelif
,
A.
,
Choujaa
,
A.
,
Benchabane
,
S.
,
Djafari-Rouhani
,
B.
, and
Laude
,
V.
,
2004
, “
Guiding and Bending of Acoustic Waves in Highly Confined Phononic Crystal Waveguides
,”
Appl. Phys. Lett.
,
84
(
22
), pp.
4400
4402
.
13.
Wang
,
P.
,
Lu
,
L.
, and
Bertoldi
,
K.
,
2015
, “
Topological Phononic Crystals With One-Way Elastic Edge Waves
,”
Phys. Rev. Lett.
,
115
(
10
), p. 104302.
14.
Lv
,
H.
,
Tian
,
X.
,
Wang
,
M. Y.
, and
Li
,
D.
,
2013
, “
Vibration Energy Harvesting Using a Phononic Crystal With Point Defect States
,”
Appl. Phys. Lett.
,
102
(
3
), p.
034103
.
15.
Gonella
,
S.
,
To
,
A. C.
, and
Liu
,
W. K.
,
2009
, “
Interplay Between Phononic Bandgaps and Piezoelectric Microstructures for Energy Harvesting
,”
J. Mech. Phys. Solids
,
57
(
3
), pp.
621
633
.
16.
Chen
,
Q.
, and
Elbanna
,
A.
,
2016
, “
Modulating Elastic Band Gap Structure in Layered Soft Composites Using Sacrificial Interfaces
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111009
.
17.
Che
,
K.
,
Yuan
,
C.
,
Wu
,
J.
,
Jerry Qi
,
H.
, and
Meaud
,
J.
,
2016
, “
Three-Dimensional-Printed Multistable Mechanical Metamaterials With a Deterministic Deformation Sequence
,”
ASME J. Appl. Mech.
,
84
(
1
), p.
011004
.
18.
Bilal
,
O. R.
,
Foehr
,
A.
, and
Daraio
,
C.
,
2017
, “
Bistable Metamaterial for Switching and Cascading Elastic Vibrations
,”
Proc. Natl. Acad. Sci. U. S. A.
,
114
(
18
), pp.
4603
4606
.
19.
Ganesh
,
R.
, and
Gonella
,
S.
,
2017
, “
Nonlinear Waves in Lattice Materials: Adaptively Augmented Directivity and Functionality Enhancement by Modal Mixing
,”
J. Mech. Phys. Solids
,
99
, pp.
272
288
.
20.
Su
,
X.-L.
,
Gao
,
Y.-W.
, and
Zhou
,
Y.-h.
,
2012
, “
The Influence of Material Properties on the Elastic Band Structures of One-Dimensional Functionally Graded Phononic Crystals
,”
J. Appl. Phys.
,
112
(
12
), p.
123503
.
21.
Huang
,
Y.
,
Shen
,
X. D.
,
Zhang
,
C. L.
, and
Chen
,
W. Q.
,
2014
, “
Mechanically Tunable Band Gaps in Compressible Soft Phononic Laminated Composites With Finite Deformation
,”
Phys. Lett. A
,
378
(
30–31
), pp.
2285
2289
.
22.
Feng
,
R.
, and
Liu
,
K.
,
2012
, “
Tuning the Band-Gap of Phononic Crystals With an Initial Stress
,”
Phys. B
,
407
(
12
), pp.
2032
2036
.
23.
Aly
,
A. H.
, and
Mehaney
,
A.
,
2015
, “
Modulation of the Band Gaps of Phononic Crystals With Thermal Effects
,”
Int. J. Thermophys.
,
36
(
10–11
), pp.
2967
2984
.
24.
Bayat
,
A.
, and
Gordaninejad
,
F.
,
2015
, “
Dynamic Response of a Tunable Phononic Crystal Under Applied Mechanical and Magnetic Loadings
,”
Smart Mater. Struct.
,
24
(
6
), p.
065027
.
25.
Robillard
,
J. F.
,
Matar
,
O. B.
,
Vasseur
,
J. O.
,
Deymier
,
P. A.
,
Stippinger
,
M.
,
Hladky-Hennion
,
A. C.
,
Pennec
,
Y.
, and
Djafari-Rouhani
,
B.
,
2009
, “
Tunable Magnetoelastic Phononic Crystals
,”
Appl. Phys. Lett.
,
95
(
12
), p.
124104
.
26.
Piliposyan
,
D. G.
,
Ghazaryan
,
K. B.
, and
Piliposian
,
G. T.
,
2015
, “
Magneto-Electro-Elastic Polariton Coupling in a Periodic Structure
,”
J. Phys. D: Appl. Phys.
,
48
(
17
), p.
175501
.
27.
Wang
,
Y.-Z.
,
Li
,
F.-M.
,
Huang
,
W.-H.
, and
Wang
,
Y.-S.
,
2007
, “
Effects of Inclusion Shapes on the Band Gaps in Two-Dimensional Piezoelectric Phononic Crystals
,”
J. Phys.: Condens. Matter
,
19
(
49
), p.
496204
.
28.
Liu
,
L.
,
Zhao
,
J.
,
Pan
,
Y.
,
Bonello
,
B.
, and
Zhong
,
Z.
,
2014
, “
Theoretical Study of SH-Wave Propagation in Periodically-Layered Piezomagnetic Structure
,”
Int. J. Mech. Sci.
,
85
, pp.
45
54
.
29.
Huang
,
Y.
,
Wang
,
H. M.
, and
Chen
,
W. Q.
,
2014
, “
Symmetry Breaking Induces Band Gaps in Periodic Piezoelectric Plates
,”
J. Appl. Phys.
,
115
(
13
), p.
133501
.
30.
Li
,
F.
,
Zhang
,
C.
, and
Liu
,
C.
,
2017
, “
Active Tuning of Vibration and Wave Propagation in Elastic Beams With Periodically Placed Piezoelectric Actuator/Sensor Pairs
,”
J. Sound Vib.
,
393
, pp.
14
29
.
31.
Psarobas
,
I. E.
,
Exarchos
,
D. A.
, and
Matikas
,
T. E.
,
2014
, “
Birefringent Phononic Structures
,”
AIP Adv.
,
4
(
12
), p.
124307
.
32.
Hasan
,
M. A.
,
Starosvetsky
,
Y.
,
Vakakis
,
A. F.
, and
Manevitch
,
L. I.
,
2013
, “
Nonlinear Targeted Energy Transfer and Macroscopic Analog of the Quantum Landau–Zener Effect in Coupled Granular Chains
,”
Phys. D
,
252
, pp.
46
58
.
33.
Chaunsali
,
R.
,
Li
,
F.
, and
Yang
,
J.
,
2016
, “
Stress Wave Isolation by Purely Mechanical Topological Phononic Crystals
,”
Sci. Rep.
,
6
(
1
), p.
30662
.
34.
Lee
,
G.-Y.
,
Chong
,
C.
,
Kevrekidis
,
P. G.
, and
Yang
,
J.
,
2016
, “
Wave Mixing in Coupled Phononic Crystals Via a Variable Stiffness Mechanism
,”
J. Mech. Phys. Solids
,
95
, pp.
501
516
.
35.
Rose
,
A.
,
Huang
,
D.
, and
Smith
,
D. R.
,
2013
, “
Nonlinear Interference and Unidirectional Wave Mixing in Metamaterials
,”
Phys. Rev. Lett.
,
110
(
6
), p.
063901
.
36.
Ganesh
,
R.
, and
Gonella
,
S.
,
2015
, “
From Modal Mixing to Tunable Functional Switches in Nonlinear Phononic Crystals
,”
Phys. Rev. Lett.
,
114
(
5
), p. 054302.
37.
Bergamini
,
A.
,
Delpero
,
T.
,
De Simoni
,
L.
,
Di Lillo
,
L.
,
Ruzzene
,
M.
, and
Ermanni
,
P.
,
2014
, “
Phononic Crystal With Adaptive Connectivity
,”
Adv. Mater.
,
26
(
9
), pp.
1343
1347
.
38.
Caleap
,
M.
, and
Drinkwater
,
B. W.
,
2014
, “
Acoustically Trapped Colloidal Crystals That are Reconfigurable in Real Time
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
17
), pp.
6226
6230
.
39.
Kapitza
,
P. L.
,
1951
, “
Dynamic Stability of a Pendulum When Its Point of Suspension Vibrates
,”
Sov. Phys.–JETP
,
21
, pp.
588
592
.
40.
Deymier
,
P.
, and
Runge
,
K.
,
2016
, “
One-Dimensional Mass-Spring Chains Supporting Elastic Waves With Non-Conventional Topology
,”
Crystals
,
6
(
4
), p.
44
.
41.
Deymier
,
P. A.
,
Runge
,
K.
,
Swinteck
,
N.
, and
Muralidharan
,
K.
,
2015
, “
Torsional Topology and Fermion-Like Behavior of Elastic Waves in Phononic Structures
,”
C. R. Mec.
,
343
(
12
), pp.
700
711
.
42.
Wang
,
Y.-Z.
,
Li
,
F.-M.
, and
Wang
,
Y.-S.
,
2016
, “
Influences of Active Control on Elastic Wave Propagation in a Weakly Nonlinear Phononic Crystal With a Monoatomic Lattice Chain
,”
Int. J. Mech. Sci.
,
106
, pp.
357
362
.
43.
Li
,
B.
, and
Tan
,
K. T.
,
2016
, “
Asymmetric Wave Transmission in a Diatomic Acoustic/Elastic Metamaterial
,”
J. Appl. Phys.
,
120
(
7
), p.
075103
.
You do not currently have access to this content.