Compared to the conventional rigid robots, the soft robots driven by soft active materials possess unique advantages with their high adaptability in field exploration and seamless interaction with human. As one type of soft robot, soft aquatic robots play important roles in the application of ocean exploration and engineering. However, the soft robots still face grand challenges, such as high mobility, environmental tolerance, and accurate control. Here, we design a soft robot with a fully integrated onboard system including power and wireless communication. Without any motor, dielectric elastomer (DE) membrane with a balloonlike shape in the soft robot can deform with large actuation, changing the total volume and buoyant force of the robot. With the help of pressure sensor, the robot can move to and stabilize at a designated depth by a closed-loop control. The performance of the robot has been investigated both experimentally and theoretically. Numerical results from the analysis agree well with the results from the experiments. The mechanisms of actuation and control may guide the further design of soft robot and smart devices.

References

1.
Godaba
,
H.
,
Li
,
J.
,
Wang
,
Y.
, and
Zhu
,
J.
,
2016
, “
A Soft Jellyfish Robot Driven by a Dielectric Elastomer Actuator
,”
IEEE Rob. Autom. Lett.
,
1
(
2
), pp.
624
631
.
2.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
3.
Rogers
,
J. A.
,
Someya
,
T.
, and
Huang
,
Y.
,
2010
, “
Materials and Mechanics for Stretchable Electronics
,”
Science
,
327
(
5973
), pp.
1603
1607
.
4.
Trivedi
,
D.
,
Rahn
,
C. D.
,
Kier
,
W. M.
, and
Walker
,
I. D.
,
2008
, “
Soft Robotics: Biological Inspiration State of the Art, and Future Research
,”
Appl. Bionics Biomech.
,
5
(
3
), pp.
99
117
.
5.
Kim
,
S.
,
Laschi
,
C.
, and
Trimmer
,
B.
,
2013
, “
Soft Robotics: A Bioinspired Evolution in Robotics
,”
Trends Biotechnol.
,
31
(
5
), pp.
287
294
.
6.
Mengüç
,
Y.
,
Park
,
Y. L.
,
Pei
,
H.
,
Vogt
,
D.
,
Aubin
,
P. M.
,
Winchell
,
E.
,
Fluke
,
L.
,
Stirling
,
L.
,
Wood
,
R. J.
, and
Walsh
,
C. J.
,
2014
, “
Wearable Soft Sensing Suit for Human Gait Measurement
,”
Int. J. Rob. Res.
,
33
(
14
), pp.
1748
1764
.
7.
Su
,
Z.
,
Yu
,
J.
,
Tan
,
M.
, and
Zhang
,
J.
,
2014
, “
Implementing Flexible and Fast Turning Maneuvers of a Multijoint Robotic Fish
,”
IEEE/ASME Trans. Mechatronics
,
19
(
1
), pp.
329
338
.
8.
Yamakita
,
M.
,
Kamamichi
,
N.
,
Kozuki
,
T.
, and
Asaka
,
K.
,
2005
, “
A Snake-Like Swimming Robot Using IPMC Actuator and Verification of Doping Effect
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Edmonton, AB, Canada, pp.
2035
2040
.
9.
Villanueva
,
A.
,
Smith
,
C.
, and
Priya
,
S.
,
2011
, “
A Biomimetic Robotic Jellyfish (Robojelly) Actuated by Shape Memory Alloy Composite Actuators
,”
Bioinspiration Biomimetics
,
6
(
3
), p.
036004
.
10.
Kopman
,
V.
, and
Porfiri
,
M.
,
2013
, “
Design, Modeling, and Characterization of a Miniature Robotic Fish for Research and Education in Biomimetics and Bioinspiration
,”
IEEE/ASME Trans. Mechatronics
,
18
(
2
), pp.
471
483
.
11.
Xiao
,
P.
,
Yi
,
N.
,
Zhang
,
T.
,
Huang
,
Y.
,
Chang
,
H.
,
Yang
,
Y.
,
Zhou
,
Y.
, and
Chen
,
Y.
,
2016
, “
Construction of a Fish‐Like Robot Based on High Performance Graphene/Pvdf Bimorph Actuation Materials
,”
Adv. Sci.
,
3
(
6
), p.
1500438
.
12.
Wang
,
Z.
,
Hang
,
G.
,
Li
,
J.
,
Wang
,
Y.
, and
Xiao
,
K.
,
2008
, “
A Micro-Robot Fish With Embedded SMA Wire Actuated Flexible Biomimetic Fin
,”
Sens. Actuators A
,
144
(
2
), pp.
354
360
.
13.
Tolley
,
M. T.
,
Shepherd
,
R. F.
,
Mosadegh
,
B.
,
Galloway
,
K. C.
,
Wehner
,
M.
,
Karpelson
,
M.
,
Wood
,
R.
, and
Whitesides
,
G.
,
2014
, “
A Resilient, Untethered Soft Robot
,”
Soft Rob.
,
1
(
3
), pp.
213
223
.
14.
Shepherd
,
R. F.
,
Ilievski
,
F.
,
Choi
,
W.
,
Morin
,
S. A.
,
Stokes
,
A. A.
,
Mazzeo
,
A. D.
,
Chen
,
X.
,
Wang
,
M.
, and
Whitesides
,
G. M.
,
2011
, “
Multigait Soft Robot
,”
Proc. Natl. Acad. Sci. U.S.A.
,
108
(
51
), p.
20400
.
15.
Morin
,
S. A.
, and
Whitesides
,
G. M.
,
2012
, “
Camouflage and Display for Soft Machines
,”
Science
,
337
(
6096
), pp.
828
832
.
16.
Seok
,
S.
,
Onal
,
C. D.
,
Cho
,
K. J.
, and
Wood
,
R. J.
,
2013
, “
Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators
,”
IEEE/ASME Trans. Mechatronics
,
18
(
5
), pp.
1485
1497
.
17.
Graule
,
M. A.
,
Chirarattananon
,
P.
,
Fuller
,
S. B.
,
Jafferis
,
N. T.
,
Ma
,
K. Y.
,
Spenko
,
M.
,
Kornbluh
,
R.
, and
Wood
,
R. J.
,
2016
, “
Perching and Takeoff of a Robotic Insect on Overhangs Using Switchable Electrostatic Adhesion
,”
Science
,
352
(
6288
), pp.
978
982
.
18.
Park
,
Y. L.
,
Chen
,
B. R.
,
Pérezarancibia
,
N. O.
,
Young
,
D.
,
Stirling
,
L.
,
Wood
,
R. J.
,
Goldfield
,
E. C.
, and
Nagpal
,
R.
,
2014
, “
Design and Control of a Bio-Inspired Soft Wearable Robotic Device for Ankle-Foot Rehabilitation
,”
Bioinspiration Biomimetics
,
9
(
1
), p.
016007
.
19.
Polygerinos
,
P.
,
Wang
,
Z.
,
Galloway
,
K. C.
,
Wood
,
R. J.
, and
Walsh
,
C. J.
,
2015
, “
Soft Robotic Glove for Combined Assistance and At-Home Rehabilitation
,”
Rob. Auton. Syst.
,
73
, pp.
135
143
.
20.
Ilievski
,
F.
,
Mazzeo
,
A. D.
,
Shepherd
,
R. F.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2011
, “
Soft Robotics for Chemists
,”
Angew. Chem.
,
123
(
8
), pp.
1930
1935
.
21.
Park
,
S. J.
,
Gazzola
,
M.
,
Park
,
K. S.
,
Park
,
S.
,
Di Santo
,
V.
,
Blevins
,
E. L.
,
Lind
,
J. U.
,
Campbell
,
P. H.
,
Dauth
,
S.
,
Capulli
,
A. K.
,
Pasqualini
,
F. S.
,
Ahn
,
S.
,
Cho
,
A.
,
Yuan
,
H.
,
Maoz
,
B. M.
,
Vijaykumar
,
R.
,
Choi.
,
J. W.
,
Deisseroth
,
K.
,
Lauder
,
G. V.
,
Mahadevan
,
L.
, and
Parker
,
K. K.
,
2016
, “
Phototactic Guidance of a Tissue-Engineered Soft-Robotic Ray
,”
Science
,
353
(
6295
), pp.
158
162
.
22.
Nawroth
,
J. C.
,
Lee
,
H.
,
Feinberg
,
A. W.
,
Ripplinger
,
C. M.
,
Mccain
,
M. L.
,
Grosberg
,
A.
,
Dabiri
,
J. O.
, and
Parker
,
K. K.
,
2012
, “
A Tissue-Engineered Jellyfish With Biomimetic Propulsion
,”
Nat. Biotechnol.
,
30
(
8
), pp.
792
797
.
23.
Koh
,
J. S.
,
Yang
,
E.
,
Jung
,
G. P.
,
Jung
,
S. P.
,
Son
,
J. H.
,
Lee
,
S. I.
, et al.,
2015
, “
Biomechanics. Jumping on Water: Surface Tension-Dominated Jumping of Water Striders and Robotic Insects
,”
Science
,
349
(
6247
), pp.
517
521
.
24.
Laschi
,
C.
,
Cianchetti
,
M.
,
Mazzolai
,
B.
,
Margheri
,
L.
,
Follador
,
M.
, and
Dario
,
P.
,
2012
, “
Soft Robot Arm Inspired by the Octopus
,”
Adv. Rob.
,
26
(
7
), pp.
709
727
.
25.
Lin
,
H. T.
,
Leisk
,
G. G.
, and
Trimmer
,
B.
,
2011
, “
Goqbot: A Caterpillar-Inspired Soft-Bodied Rolling Robot
,”
Bioinspiration Biomimetics
,
6
(
2
), p.
026007
.
26.
Marchese
,
A. D.
,
Onal
,
C. D.
, and
Rus
,
D.
,
2014
, “
Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators
,”
Soft Rob.
,
1
(
1
), pp.
75
87
.
27.
Wehner
,
M.
,
Truby
,
R. L.
,
Fitzgerald
,
D. J.
,
Mosadegh
,
B.
,
Whitesides
,
G. M.
,
Lewis
,
J. A.
, and
Wood
,
R. J.
,
2016
, “
An Integrated Design and Fabrication Strategy for Entirely Soft, Autonomous Robots
,”
Nature
,
536
(
7617
), pp.
451
455
.
28.
Li
,
T.
,
Li
,
G.
,
Liang
,
Y.
,
Cheng
,
T.
,
Dai
,
J.
,
Yang
,
X.
,
Liu
,
B.
,
Zeng
,
Z.
,
Huang
,
Z.
,
Luo
,
Y.
,
Xie
,
T.
, and
Yang
,
W.
,
2017
, “
Soft Electro-Ionic Fish With Autonomous Fast Moving
,”
Sci. Adv.
,
3
(
4
), p.
e1602045
.
29.
Anderson
,
I. A.
,
Kelch
,
M.
,
Sun
,
S.
,
Jowers
,
C.
,
Xu
,
D.
, and
Murray
,
M. M.
,
2013
, “
Artificial Muscle Actuators for a Robotic Fish
,”
Biomimetic and Biohybrid Systems
, Vol.
8064
,
Springer
,
Berlin
, pp.
350
352
.
30.
Jordi
,
C.
,
Michel
,
S.
,
Dürager
,
C.
,
Bormann
,
A.
,
Gebhardt
,
C.
, and
Kovacs
,
G.
,
2010
, “
Large Planar Dielectric Elastomer Actuators for Fish-Like Propulsion of an Airship
,”
Proc. SPIE
,
7642
, pp.
579
595
.
31.
Carpi
,
F.
,
Carpi
,
F.
,
De Rossi
,
D.
,
Kornbluh
,
R.
,
Pelrine
,
R.
, and
Sommer-Larsen
,
P.
,
2008
,
Dielectric Elastomers as Electromechanical Transducers
(Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology),
Elsevier Science
,
Oxford, UK
.
32.
Suo
,
Z.
,
2010
, “
Theory of Dielectric Elastomers
,”
Acta Mech. Solidia Sin.
,
23
(
6
), pp.
549
578
.
33.
Wissler
,
M.
, and
Mazza
,
E.
,
2005
, “
Modeling of a Pre-Strained Circular Actuator Made of Dielectric Elastomers
,”
Sens. Actuators A
,
120
(
1
), pp.
184
192
.
34.
Wissler
,
M.
, and
Mazza
,
E.
,
2005
, “
Modeling and Simulation of Dielectric Elastomer Actuators
,”
Smart Mater. Struct.
,
14
(
6
), pp.
1396
1402
.
35.
Goulbourne
,
N.
,
Mockensturm
,
E.
, and
Frecker
,
M.
,
2005
, “
A Nonlinear Model for Dielectric Elastomer Membranes
,”
ASME J. Appl. Mech.
,
72
(
6
), pp.
899
906
.
36.
Goulbourne
,
N. C.
,
Mockensturm
,
E. M.
, and
Frecker
,
M. I.
,
2007
, “
Electro-Elastomers: Large Deformation Analysis of Silicone Membranes
,”
Int. J. Solids Struct.
,
44
(
9
), pp.
2609
2626
.
37.
Plante
,
J. S.
, and
Dubowsky
,
S.
,
2006
, “
Large-Scale Failure Modes of Dielectric Elastomer Actuators
,”
Int. J. Solids Struct.
,
43
(
25
), pp.
7727
7751
.
38.
Plante
,
J. S.
, and
Dubowsky
,
S.
,
2007
, “
On the Performance Mechanisms of Dielectric Elastomer Actuators
,”
Sens. Actuators A
,
137
(
1
), pp.
96
109
.
39.
Zhao
,
X.
, and
Suo
,
Z.
,
2008
, “
Electrostriction in Elastic Dielectrics Undergoing Large Deformation
,”
J. Appl. Phys.
,
104
(
12
), p.
123530
.
40.
Li
,
B.
,
Chen
,
H.
,
Qiang
,
J.
, and
Zhou
,
J.
,
2012
, “
A Model for Conditional Polarization of the Actuation Enhancement of a Dielectric Elastomer
,”
Soft Matter
,
8
(
2
), pp.
311
317
.
41.
Gent
,
A. N.
,
1996
, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
,
69
(
1
), pp.
59
61
.
42.
Li
,
T.
,
Keplinger
,
C.
,
Baumgartner
,
R.
,
Bauer
,
S.
,
Yang
,
W.
, and
Suo
,
Z.
,
2013
, “
Giant Voltage-Induced Deformation in Dielectric Elastomers Near the Verge of Snap-Through Instability
,”
J. Mech. Phys. Solids
,
61
(
2
), pp.
611
628
.
You do not currently have access to this content.