Unidirectional acoustic transmission is acquired in a one-dimensional graded phononic crystal. The distinct feature of the present design is that waves can propagate unidirectionally at a certain frequency from the left to right, and waves at another frequency can propagate in the opposite direction from the right to left. This two-way asymmetric propagation behavior is realized at the narrow resonant frequencies in the acoustic band gap by a novel mechanism, which is totally linear and obeys the time-reversal symmetry. Simulation shows that for the graded heterogeneous structure, the resonant peaks of frequency in the acoustic band gap for opposite propagation directions become different. In the transmission spectrum, this mechanism corresponds to a pass-band splitting, and each separated peak represents a unidirectional propagation behavior. The separation of two peaks has been proved to have a close relation to the grading degree of the material property in the spatially periodic components. The unique propagation characteristic obtained at resonant frequencies in the band gaps may provide us a new way to realize a two-way unidirectional narrow-band acoustic filter.

References

1.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
(
13
), p.
2022
.
2.
Sigalas
,
M. M.
, and
Economou
,
E. N.
,
1992
, “
Elastic and Acoustic Wave Band Structure
,”
J. Sound Vib.
,
158
(
2
), pp.
377
382
.
3.
Martinezsala
,
R.
,
Sancho
,
J.
,
Sánchez
,
J. V.
,
Gómez
,
V.
,
Llinares
,
J.
, and
Meseguer
,
F.
,
1995
, “
Sound-Attenuation by Sculpture
,”
Nature
,
378
(
6554
), p.
241
.
4.
Vasseur
,
J.
,
Deymier
,
P.
,
Chenni
,
B.
,
Djafari-Rouhani
,
B.
,
Dobrzynski
,
L.
, and
Prevost
,
D.
,
2001
, “
Experimental and Theoretical Evidence for the Existence of Absolute Acoustic Band Gaps in Two-Dimensional Solid Phononic Crystals
,”
Phys. Rev. Lett.
,
86
(
14
), p.
3012
.
5.
Vasseur
,
J.
,
Djafari-Rouhani
,
B.
,
Dobrzynski
,
L.
,
Kushwaha
,
M.
, and
Halevi
,
P.
,
1994
, “
Complete Acoustic Band Gaps in Periodic Fibre Reinforced Composite Materials: The Carbon/Epoxy Composite and Some Metallic Systems
,”
J. Phys.: Condens. Matter
,
6
(
42
), p.
8759
.
6.
Bian
,
Z. G.
, and
Peng
,
W.
,
2014
, “
Thermal Tuning of Band Structures in a One-Dimensional Phononic Crystal
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041008
.
7.
Li
,
F. L.
,
Wang
,
Y. S.
,
Zhang
,
C. Z.
, and
Yu
,
G. L.
,
2014
, “
Bandgaps of Two-Dimensional Phononic Crystals With Sliding Interface Conditions
,”
ASME J. Appl. Mech.
,
81
(
6
), p.
064501
.
8.
Brito-Santana
,
H.
,
Wang
,
Y. S.
,
Rodríguez-Ramos
,
R.
,
Bravo-Castillero
,
J.
,
Guinovart-Díaz
,
R.
, and
Tita
,
V.
,
2015
, “
A Dispersive Nonlocal Model for In-Plane Wave Propagation in Laminated Composites With Periodic Structures
,”
ASME J. Appl. Mech.
,
82
(
3
), p.
031006
.
9.
Chen
,
Q. L.
, and
Elbanna
,
A.
,
2016
, “
Modulating Elastic Band Gap Structure in Layered Soft Composites Using Sacrificial Interfaces
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111009
.
10.
Martínez-Sala
,
R.
,
Rubio
,
C.
,
García-Raffi
,
L. M.
,
Sánchez-Pérez
,
J. V.
,
Sánchez-Pérez
,
E. A.
, and
Llinares
,
J.
,
2006
, “
Control of Noise by Trees Arranged Like Sonic Crystals
,”
J. Sound Vib.
,
291
(
1–2
), pp.
100
106
.
11.
Sánchez-Dehesa
,
J.
,
Garcia-Chocano
,
V. M.
,
Torrent
,
D.
,
Cervera
,
F.
,
Cabrera
,
S.
, and
Simon
,
F.
,
2011
, “
Noise Control by Sonic Crystal Barriers Made of Recycled Materials
,”
J. Acoust. Soc. Am.
,
129
(
3
), p.
1173
.
12.
Qiu
,
C.
,
Liu
,
Z.
,
Shi
,
J.
, and
Chan
,
C.
,
2005
, “
Directional Acoustic Source Based on the Resonant Cavity of Two-Dimensional Phononic Crystals
,”
Appl. Phys. Lett.
,
86
(
22
), p.
224105
.
13.
Yuan
,
B.
,
Liang
,
B.
,
Tao
,
J.
,
Zou
,
X.
, and
Cheng
,
J.
,
2012
, “
Broadband Directional Acoustic Waveguide With High Efficiency
,”
Appl. Phys. Lett.
,
101
(
4
), p.
043503
.
14.
Khelif
,
A.
,
Choujaa
,
A.
,
Benchabane
,
S.
,
Djafari-Rouhani
,
B.
, and
Laude
,
V.
,
2004
, “
Guiding and Bending of Acoustic Waves in Highly Confined Phononic Crystal Waveguides
,”
Appl. Phys. Lett.
,
84
(
22
), p.
4400
.
15.
Khelif
,
A.
,
Choujaa
,
A.
,
Djafari-Rouhani
,
B.
,
Wilm
,
M.
,
Ballandras
,
S.
, and
Laude
,
V.
,
2003
, “
Trapping and Guiding of Acoustic Waves by Defect Modes in a Full-Band-Gap Ultrasonic Crystal
,”
Phys. Rev. B
,
68
(
21
), p.
214301
.
16.
Lin
,
S.-C. S.
,
Huang
,
T. J.
,
Sun
,
J. H.
, and
Wu
,
T. T.
,
2009
, “
Gradient-Index Phononic Crystals
,”
Phys. Rev. B
,
79
(
9
), p.
094302
.
17.
He
,
Z.
,
Cai
,
F.
, and
Liu
,
Z.
,
2008
, “
Guiding Acoustic Waves With Graded Phononic Crystals
,”
Solid State Commun.
,
148
(
1–2
), pp.
74
77
.
18.
Su
,
X. L.
,
Gao
,
Y. W.
, and
Zhou
,
Y. H.
,
2012
, “
The Influence of Material Properties on the Elastic Band Structures of One-Dimensional Functionally Graded Phononic Crystals
,”
J. Appl. Phys.
,
112
(
12
), p.
123503
.
19.
Liang
,
Y. J.
,
Chen
,
L. W.
,
Wang
,
C. C.
, and
Chang
,
I. L.
,
2014
, “
An Acoustic Absorber Implemented by Graded Index Phononic Crystals
,”
J. Appl. Phys.
,
115
(
24
), p.
244513
.
20.
Jin
,
Y.
,
Torrent
,
D.
,
Pennec
,
Y.
,
Pan
,
Y.
, and
Djafari-Rouhani
,
B.
,
2015
, “
Simultaneous Control of the S 0 and A 0 Lamb Modes by Graded Phononic Crystal Plates
,”
J. Appl. Phys.
,
117
(
24
), p.
244904
.
21.
Zhang
,
X.
,
Qu
,
Z.
,
He
,
X.
, and
Lu
,
D.
,
2016
, “
Experimental Study on the Sound Absorption Characteristics of Continuously Graded Phononic Crystals
,”
AIP Adv.
,
6
(
10
), p.
105205
.
22.
Sánchez-Pérez
,
J.
,
Caballero
,
D.
,
Martinez-Sala
,
R.
,
Rubio
,
C.
,
Sánchez-Dehesa
,
J.
,
Meseguer
,
F.
,
Llinares
,
J.
, and
Gálvez
,
F.
,
1998
, “
Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders
,”
Phys. Rev. Lett.
,
80
(
24
), p.
5325
.
23.
Kafesaki
,
M.
, and
Economou
,
E. N.
,
1999
, “
Multiple-Scattering Theory for Three-Dimensional Periodic Acoustic Composites
,”
Phys. Rev. B
,
60
(
17
), p.
11993
.
24.
Kafesaki
,
M.
,
Sigalas
,
M.
, and
Garcia
,
N.
,
2000
, “
Frequency Modulation in the Transmittivity of Wave Guides in Elastic-Wave Band-Gap Materials
,”
Phys. Rev. Lett.
,
85
(
19
), p.
4044
.
25.
Huang
,
Y.
,
Shen
,
X. D.
,
Zhang
,
C. L.
, and
Chen
,
W. Q.
,
2014
, “
Mechanically Tunable Band Gaps in Compressible Soft Phononic Laminated Composites With Finite Deformation
,”
Phys. Lett. A
,
378
(
30–31
), pp.
2285
2289
.
26.
Liang
,
B.
,
Guo
,
X. S.
,
Tu
,
J.
,
Zhang
,
D.
, and
Cheng
,
J. C.
,
2010
, “
An Acoustic Rectifier
,”
Nat. Mater.
,
9
(
12
), pp.
989
992
.
27.
Boechler
,
N.
,
Theocharis
,
G.
, and
Daraio
,
C.
,
2011
, “
Bifurcation-Based Acoustic Switching and Rectification
,”
Nat. Mater.
,
10
(
9
), pp.
665
668
.
28.
Liu
,
C.
,
Du
,
Z. L.
,
Sun
,
Z.
,
Gao
,
H. J.
, and
Guo
,
X.
,
2015
, “
Frequency-Preserved Acoustic Diode Model With High Forward-Power-Transmission Rate
,”
Phys. Rev. Appl.
,
3
(
6
), p.
064014
.
29.
Li
,
X. F.
,
Ni
,
X.
,
Feng
,
L.
,
Lu
,
M. H.
,
He
,
C.
, and
Chen
,
Y. F.
,
2011
, “
Tunable Unidirectional Sound Propagation Through a Sonic-Crystal-Based Acoustic Diode
,”
Phys. Rev. Lett.
,
106
(
8
), p.
084301
.
30.
He
,
Z.
,
Peng
,
S.
,
Ye
,
Y.
,
Dai
,
Z.
,
Qiu
,
C.
,
Ke
,
M.
, and
Liu
,
Z.
,
2011
, “
Asymmetric Acoustic Gratings
,”
Appl. Phys. Lett.
,
98
(
8
), p.
083505
.
31.
Sun
,
H.
,
Zhang
,
S.
, and
Shui
,
X.
,
2012
, “
A Tunable Acoustic Diode Made by a Metal Plate With Periodical Structure
,”
Appl. Phys. Lett.
,
100
(
10
), p.
103507
.
32.
Cicek
,
A.
,
Adem Kaya
,
O.
, and
Ulug
,
B.
,
2012
, “
Refraction-Type Sonic Crystal Junction Diode
,”
Appl. Phys. Lett.
,
100
(
11
), p.
111905
.
33.
Chen
,
W. Q.
, and
Ding
,
H. J.
,
2012
, “
The State-Space Method and Its Application in Analyses of FGM Structures
,”
Mechanics of Functionally Graded Materials and Structures
,
Z.
Zhong
,
L. Z.
Wu
, and
W. Q.
Chen
, eds.,
Nova Science Publishers
,
New York
, pp.
139
178
.
You do not currently have access to this content.