In this paper, a compressive-mode wideband vibration energy harvester using a combination of bistable and flextensional mechanisms is proposed. The structure consists of a cantilever with a magnet fixed at its free end, and a flextensional actuator with a magnet fixed at its free end. A theoretical model is developed to characterize the compressive-mode wideband vibration energy harvester. Both simulations and experiments are carried out to validate the design and analysis of the compressive-mode wideband vibration energy harvester. The results show that the device can work in broadband, and the piezoelectric constant d31 can be enlarged 134 times. The experimental results also indicate that the harvester can generate the power about 31 μW with the resistive load 390 kΩ, while the magnetic pressure is 2.9 N. A developed design including two flextensional actuators symmetrically arranged is also presented. The experimental results show that the two flextensional actuators in the developed design can harvest more energy than one flextensional actuator in the primal design.

References

1.
Gammaitoni
,
L.
,
2012
, “
There's Plenty of Energy at the Bottom (Micro and Nano Scale Nonlinear Noise Harvesting)
,”
Contemp. Phys.
,
53
(
2
), pp.
119
135
.
2.
Toprak
,
A.
, and
Tigli
,
O.
,
2014
, “
Piezoelectric Energy Harvesting: State-of-the-Art and Challenges
,”
Appl. Phys. Rev.
,
1
(
3
), p.
031104
.
3.
Zhu
,
D.
,
Tudor
,
M. J.
, and
Beeby
,
S. P.
,
2010
, “
Strategies for Increasing the Operating Frequency Range of Vibration Energy Harvesters: A Review
,”
Meas. Sci. Technol.
,
21
(
2
), p.
022001
.
4.
Galchev
,
T.
,
Aktakka
,
E. E.
, and
Najafi
,
K.
,
2012
, “
A Piezoelectric Parametric Frequency Increased Generator for Harvesting Low-Frequency Vibrations
,”
J. Microelectromech. Syst.
,
21
(
6
), pp.
1311
1320
.
5.
Rezaeisaray
,
M.
,
EI Gowini
,
M.
,
Sameoto
,
D.
,
Raboud
,
D.
, and
Moussa
,
W.
,
2014
, “
Wide-Bandwidth Piezoelectric Energy Harvester With Polymeric Structure
,”
J. Micromech. Microeng.
,
25
(
1
), p.
015018
.
6.
Xiao
,
Z.
,
Yang
,
T. Q.
,
Dong
,
Y.
, and
Wang
,
X. C.
,
2014
, “
Energy Harvester Array Using Piezoelectric Circular Diaphragm for Broadband Vibration
,”
Appl. Phys. Lett.
,
104
(
22
), p.
223904
.
7.
Lallart
,
M.
,
Anton
,
S. R.
, and
Inman
,
D. J.
,
2010
, “
Frequency Self-Tuning Scheme for Broadband Vibration Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
21
(
9
), pp.
897
906
.
8.
Challa
,
V. R.
,
Prasad
,
M. G.
, and
Fisher
,
F. T.
,
2011
, “
Towards an Autonomous Self-Tuning Vibration Energy Harvesting Device for Wireless Sensor Network Applications
,”
Smart Mater. Struct.
,
20
(
2
), p.
025004
.
9.
Chen
,
L. Q.
, and
Jiang
,
W. A.
,
2015
, “
Internal Resonance Energy Harvesting
,”
ASME J. Appl. Mech.
,
82
(
3
), p.
031004
.
10.
Chen
,
L. Q.
,
Zhang
,
G. C.
, and
Ding
,
H.
,
2015
, “
Internal Resonance in Forced Vibration of Coupled Cantilevers Subjected to Magnetic Interaction
,”
J. Sound Vib.
,
354
, pp.
196
218
.
11.
Daqaq
,
M. F.
,
Masana
,
R.
,
Erturk
,
A.
, and
Quinn
,
D. D.
,
2014
, “
On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040801
.
12.
Boisseau
,
S.
,
Despesse
,
G.
, and
Seddik
,
B. A.
,
2013
, “
Nonlinear h-Shaped Springs to Improve Efficiency of Vibration Energy Harvesters
,”
ASME J. Appl. Mech.
,
80
(
6
), p.
061013
.
13.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.
14.
Harne
,
R. L.
,
Thota
,
M.
, and
Wang
,
K. W.
,
2013
, “
Bistable Energy Harvesting Enhancement With an Auxiliary Linear Oscillator
,”
Smart Mater. Struct.
,
22
(
12
), p.
125028
.
15.
Wu
,
Z.
,
Harne
,
R. L.
, and
Wang
,
K. W.
,
2014
, “
Energy Harvester Synthesis Via Coupled Linear-Bistable System With Multistable Dynamics
,”
ASME J. Appl. Mech.
,
81
(
6
), p.
061005
.
16.
Challa
,
V. R.
,
Prasad
,
M. G.
,
Shi
,
Y.
, and
Fisher
,
F. T.
,
2008
, “
A Vibration Energy Harvesting Device With Bidirectional Resonance Frequency Tunability
,”
Smart Mater. Struct.
,
17
(
1
), p.
015035
.
17.
Erturk
,
A.
,
Hoffmann
,
J.
, and
Inman
,
D. J.
,
2009
, “
A Piezomagnetoelastic Structure for Broadband Vibration Energy Harvesting
,”
Appl. Phys. Lett.
,
94
(
25
), p.
254102
.
18.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
, “
Broadband Piezoelectric Power Generation on High-Energy Orbits of the Bistable Duffing Oscillator With Electromechanical Coupling
,”
J. Sound Vib.
,
330
(
10
), pp.
2339
2353
.
19.
Stanton
,
S. C.
,
McGehee
,
C. C.
, and
Mann
,
B. P.
,
2010
, “
Nonlinear Dynamics for Broadband Energy Harvesting: Investigation of a Bistable Piezoelectric Inertial Generator
,”
Phys. D: Nonlinear Phenom.
,
239
(
10
), pp.
640
653
.
20.
Cao
,
J.
,
Zhou
,
S.
,
Inman
,
D. J.
, and
Lin
,
J.
,
2015
, “
Nonlinear Dynamic Characteristics of Variable Inclination Magnetically Coupled Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021015
.
21.
Li
,
H.
,
Qin
,
W.
,
Lan
,
C.
,
Deng
,
W.
, and
Zhou
,
Z.
,
2015
, “
Dynamics and Coherence Resonance of Tri-Stable Energy Harvesting System
,”
Smart Mater. Struct.
,
25
(
1
), p.
015001
.
22.
Xu
,
T. B.
,
Jiang
,
X.
, and
Su
,
J.
,
2011
, “
A Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction System
,”
Appl. Phys. Lett.
,
98
(
24
), p.
243503
.
23.
Xu
,
T. B.
,
Siochi
,
E. J.
,
Kang
,
J. H.
,
Zuo
,
L.
,
Zhou
,
W.
,
Tang
,
X.
, and
Jiang
,
X.
,
2013
, “
Energy Harvesting Using a PZT Ceramic Multilayer Stack
,”
Smart Mater. Struct.
,
22
(
6
), p.
065015
.
24.
Chen
,
Y.
,
Zhang
,
H.
,
Zhang
,
Y.
,
Li
,
C.
,
Yang
,
Q.
,
Zheng
,
H.
, and
,
C.
,
2016
, “
Mechanical Energy Harvesting From Road Pavements Under Vehicular Load Using Embedded Piezoelectric Elements
,”
ASME J. Appl. Mech.
,
83
(
8
), p.
081001
.
25.
Kim
,
H. W.
,
Piya
,
S.
,
Uchino
,
K.
, and
Newnham
,
R. E.
,
2005
, “
Piezoelectric Energy Harvesting Under High Pre-Stressed Cyclic Vibrations
,”
J. Electroceram.
,
15
(
1
), pp.
27
34
.
26.
Xu
,
T. B.
,
Tolliver
,
L.
,
Jiang
,
X.
, and
Su
,
J.
,
2013
, “
A Single Crystal Lead Magnesium Niobate-Lead Titanate Multilayer-Stacked Cryogenic Flextensional Actuator
,”
Appl. Phys. Lett.
,
102
(
4
), p.
042906
.
27.
Mo
,
C.
,
Arnold
,
D.
,
Kinsel
,
W. C.
, and
Clark
,
W. W.
,
2012
, “
Modeling and Experimental Validation of Unimorph Piezoelectric Cymbal Design in Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
24
(
7
), pp.
828
836
.
28.
Hsu
,
J. C.
,
Tseng
,
C. T.
, and
Chen
,
Y. S.
,
2014
, “
Analysis and Experiment of Self-Frequency-Tuning Piezoelectric Energy Harvesters for Rotational Motion
,”
Smart Mater. Struct.
,
23
(
7
), p.
075013
.
29.
Ali
,
S. F.
,
Adhikari
,
S.
,
Friswell
,
M. I.
, and
Narayanan
,
S.
,
2011
, “
The Analysis of Piezomagnetoelastic Energy Harvesters Under Broadband Random Excitations
,”
J. Appl. Phys.
,
109
(
7
), p.
074904
.
30.
Jung
,
S. M.
, and
Yun
,
K. S.
,
2010
, “
Energy-Harvesting Device With Mechanical Frequency-Up Conversion Mechanism for Increased Power Efficiency and Wideband Operation
,”
Appl. Phys. Lett.
,
96
(
11
), p.
111906
.
You do not currently have access to this content.