In previous publications, strain-energy functions with limiters have been introduced for the prediction of onset of failure in monolithic isotropic hyperelastic materials. In the present investigation, such enhanced strain-energy functions whose ability to accumulate energy is limited have been incorporated with a finite strain micromechanical analysis. As a result, macroscopic constitutive equations have been established which are capable to predict the onset of loss of static stability in a hyperelastic phase of composite materials undergoing large deformations. The details of the micromechanical analysis, based on a tangential formulation, for composites with periodic microstructure are presented. The derived micromechanical analysis includes the capability to model a possible imperfect bonding between the composite’s constituents and to provide the field distribution in the composite. The micromechanical method is verified by comparison with analytical and finite difference solutions for porous hyperelastic materials that are valid in some special cases. Results are given for a rubberlike matrix characterized by softening hyperelasticity, reinforced by unidirectional nylon fibers. The response of the composite to various types of loadings is presented up to the onset of loss of static stability at a location within the hyperelastic rubber constituent, and initial failure envelopes are shown.

References

1.
Christensen
,
R. M.
,
2013
,
The Theory of Materials Failure
,
Oxford University Press, Oxford
,
UK
.
2.
Gosse
,
J. H.
, and
Christensen
,
R. M.
,
2001
, “
Strain Invariant Failure Criteria for Polymers in Composite Materials
,”
AIAA
Paper No. 2001-1184.10.2514/6.2001-1184
3.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics
,
Springer
,
New York
.
4.
Aboudi
,
J.
,
Arnold
,
S. M.
, and
Bednarcyk
,
B. A.
,
2013
,
Micromechanics of Composite Materials: A Generalized Multiscale Analysis Approach
,
Elsevier
,
Oxford, UK
.
5.
Volokh
,
K. Y.
,
2013
, “
Review of the Energy Limiters Approach to Modeling Failure of Rubber
,”
Rubber Chem. Technol.
,
86
(
3
), pp.
470
487
.10.5254/rct.13.87948
6.
Volokh
,
K. Y.
,
2010
, “
On Modeling Failure of Rubber-Like Materials
,”
Mech. Res. Commun.
,
37
(
8
), pp.
684
689
.10.1016/j.mechrescom.2010.10.006
7.
Volokh
,
K. Y.
,
2010
, “
Comparison of Biomechanical Failure Criteria for Abdominal Aortic Aneurysm
,”
J. Biomech.
,
43
(
10
), pp.
2032
2034
.10.1016/j.jbiomech.2010.03.024
8.
Aboudi
,
J.
, and
Pindera
,
M.-J.
,
2004
, “
High-Fidelity Micromechanical Modeling of Continuously Reinforced Elastic Multiphase Materials Undergoing Finite Deformation
,”
Math. Mech. Solids
,
9
(
6
), pp.
599
628
.10.1177/1081286504038591
9.
Aboudi
,
J.
,
2009
, “
Finite Strain Micromechanical Analysis of Rubber-Like Matrix Composites Incorporating the Mullins Damage Effect
,”
Int. J. Damage Mech.
,
18
(1), pp.
5
29
.10.1177/1056789507081845
10.
Ogden
,
R. W.
,
1984
,
Non-Linear Elastic Deformations
,
Ellis Horwood
,
Chichester, UK
.
11.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics
,
Wiley
,
New York
.
12.
Volokh
,
K. Y.
,
2014
, “
On Irreversibility and Dissipation in Hyperelasticity With Softening
,”
ASME J. Appl. Mech.
,
81
(
7
), p.
074501
.10.1115/1.4026853
13.
Wang
,
J.
,
Duan
,
H. L.
,
Zhang
,
Z.
, and
Huang
,
Z. P.
,
2005
, “
An Anti-Interpenetration Model and Connections Between Interphase and Interface Models in Particle-Reinforced Composites
,”
Int. J. Mech. Sci.
,
47
(
4–5
), pp.
701
718
.10.1016/j.ijmecsci.2004.12.014
14.
Jafari
,
A. H.
,
Abeyaratne
,
R.
, and
Horgan
,
C. O.
,
1984
, “
The Finite Deformation of a Pressurized Circular Tube for a Class of Compressible Materials
,”
J. Appl. Math. Phys. (ZAMP)
,
35
(
2
), pp.
227
246
.10.1007/BF00947935
15.
Haughton
,
D. M.
,
1987
, “
Inflation and Bifurcation of Thick-Walled Compressible Elastic Spherical Shells
,”
IMA J. Appl. Math.
,
39
(
3
), pp.
259
272
.10.1093/imamat/39.3.259
16.
Blatz
,
P. J.
, and
Ko
,
W. L.
,
1962
, “
Application of Finite Elastic Theory to the Deformation of Rubbery Materials
,”
Trans. Soc. Rheol.
,
6
(1), pp.
223
251
.10.1122/1.548937
17.
Horgan
,
C. O.
,
1995
, “
On Axisymmetric Solutions for Compressible Nonlinearly Elastic Solids
,”
J. Appl. Math. Phys. (ZAMP)
,
46
, pp.
S107
S125
.
18.
Horgan
,
C. O.
,
2001
, “
Equilibrium Solutions for Compressible Nonlinearly Elastic Material
,”
Nonlinear Elasticity: Theory and Applications
,
R. W.
Ogden
and
Y.
Fu
, eds.,
Cambridge University Press
,
Cambridge, UK
, pp.
135
159
.
19.
Hashin
,
Z.
, and
Rosen
,
B. W.
,
1964
, “
The Elastic Moduli of Fiber-Reinforced Materials
,”
ASME J. Appl. Mech.
,
31
(
2
), pp.
223
232
.10.1115/1.3629590
20.
Chung
,
D. T.
,
Horgan
,
C. O.
, and
Abeyaratne
,
R.
,
1986
, “
The Finite Deformation of Internally Pressurized Hollow Cylinders and Spheres for a Class of Compressible Elastic Materials
,”
Int. J. Solids Struct.
,
22
(
12
), pp.
1557
1570
.10.1016/0020-7683(86)90062-4
21.
Hamdi
,
A.
,
Nait Abdelaziz
,
M.
,
Ait Hocine
,
N.
,
Heuillet
,
P.
, and
Benseddiq
,
N.
,
2006
, “
A Fracture Criterion of Rubber-Like Materials Under Plane Stress Conditions
,”
Polym. Test.
,
25
(
8
), pp.
994
1005
.10.1016/j.polymertesting.2006.06.005
22.
Yeoh
,
O. H.
,
1990
, “
Characterization of Elastic Properties of Carbon Black Filled Rubber Vulcanizates
,”
Rubber Chem. Technol.
,
63
(
5
), pp.
792
805
.10.5254/1.3538289
23.
Assaad
,
M.
, and
Arnold
,
S. M.
,
1999
, “
An Analysis of the Macroscopic Tensile Behavior of a Nonlinear Nylon Reinforced Elastomeric Composite System Using MAC/GMC
,” NASA Glenn Research Center, Cleveland, OH, Paper No. NASA/TM-1999-209066.
24.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
.10.1098/rsif.2005.0073
25.
Kim
,
H. S.
,
2009
, “
Nonlinear Multiscale Anisotropic Material and Structural Models for Prosthetic and Native Aortic Heart Valves
,” Ph.D. dissertation, Georgia Institute of Technology, Atlanta, GA.
26.
Kim
,
H. S.
,
Haj-Ali
,
R.
, and
Aboudi
,
J.
,
2010
, “
Nonlinear Micromechanical Modeling Approach for Anisotropic Hyperelastic Tissue Materials
,”
1st International Conference on Advances in Interaction and Multiscale Mechanics
, Jeju, South Korea, May 31–June 2.
27.
Balakhovsky
,
K.
,
Jabareen
,
M.
, and
Volokh
,
K.
,
2014
, “
Modeling Rupture of Growing Aneurysms
,”
J. Biomech.
,
47
(
3
), pp.
653
658
.10.1016/j.jbiomech.2013.11.049
You do not currently have access to this content.