An analytical model predicting the dynamic local buckling failure of plates with a large dimension in the longitudinal direction compressed at a constant rate was proposed. The model began with the hypothesis that the proposed analytical approach could be an alternative methodology to approximate the dynamic local plate buckling response of constituent plates of corrugated core sandwich columns. Prior to the model development, four preliminary finite-element (FE) simulations were conducted to observe the typical dynamic response of the sandwich columns having thin core web plates or thin face sheets. From the simulations, several wrinkles with a regular pattern were generated, and then one of the wrinkles grew excessively to a failure. Accordingly, the proposed model considered an imaginary patch plate on a long plate simulating a face sheet or a core web plate. The size of the patch plate was predefined so as to encompass the major growing wrinkle, and the out-of-plane displacement was calculated till load drop. The verification of the proposed model was followed by comparison with the FE calculations. The model was satisfactory in predicting maximum forces and times-to-failure, but some discrepancies were found when postcritical behavior and plasticity were involved. The sources of the discrepancies were discussed.

References

1.
Evans
,
A. G.
,
Hutchinson
,
J. W.
,
Fleck
,
N. A.
,
Ashby
,
M. F.
, and
Wadley
,
H. N. G.
,
2001
, “
The Topological Design of Multifunctional Cellular Metals
,”
Prog. Mater. Sci.
,
46
(
3
), pp.
309
327
.
2.
Wadley
,
H. N. G.
,
2002
, “
Cellular Metals Manufacturing
,”
Adv. Eng. Mat.
,
4
(
10
), pp.
726
733
.
3.
Wadley
,
H. N. G.
,
2006
, “
Multifunctional Periodic Cellular Metals
,”
Phil. Trans. R. Soc. A
,
364
(
1838
), pp.
31
68
.
4.
Pedersen
,
C. B. W.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2006
, “
Compressive Response of the Y-Shaped Sandwich Core
,”
Eur. J. Mech. A
,
25
(
1
), pp.
125
141
.
5.
Rubino
,
V.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2009
, “
The Dynamic Response of Clamped Rectangular Y-Frame and Corrugated Core Sandwich Plates
,”
Eur. J. Mech. A
,
28
(
1
), pp.
14
24
.
6.
Lee
,
J.
,
Moon
,
I.
,
Seo
,
S.
, and
Jang
,
Y.
,
2001
, “
Study on Application of Large-Scale Aluminum Extruded Materials
,” Korean Society for Railway, Jeju, Korea, pp.
2672
2678
.
7.
Kim
,
T.
,
Zhao
,
C. Y.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
,
2004
, “
Convective Heat Dissipation With Lattice-Frame Materials
,”
Mech. Mater.
,
36
(
8
), pp.
767
780
.
8.
Wei
,
Z.
,
Dharmasena
,
K. P.
,
Wadley
,
H. N. G.
, and
Evans
,
A. G.
,
2007
, “
Analysis and Interpretation of a Test for Characterizing the Response of Sandwich Panels to Water Blast
,”
Int. J. Impact Eng.
,
34
(
10
), pp.
1602
1618
.
9.
McShane
,
G. J.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2007
, “
The Underwater Blast Resistance of Metallic Sandwich Beams With Prismatic Lattice Cores
,”
ASME J. Appl. Mech.
,
74
(
2
), pp.
352
364
.
10.
Qiu
,
X.
,
Deshpande
, V
. S.
, and
Fleck
,
N. A.
,
2003
, “
Finite Element Analysis of the Dynamic Response of Clamped Sandwich Beams Subject to Shock Loading
,”
Eur. J. Mech. A
,
22
(
6
), pp.
801
814
.
11.
Qiu
,
X.
,
Deshpande
, V
. S.
, and
Fleck
,
N. A.
,
2005
, “
Impulsive Loading of Clamped Monolithic and Sandwich Beams Over a Central Patch
,”
J. Mech. Phys. Solids
,
53
(
5
), pp.
1015
1046
.
12.
Zok
,
F. W.
,
Waltner
,
S. A.
,
Wei
,
Z.
,
Rathbun
,
H. J.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
,
2004
, “
A Protocol for Characterizing the Structural Performance of Metallic Sandwich Panels: Application to Pyramidal Truss Cores
,”
Int. J. Solids Struct.
,
41
(
22
), pp.
6249
6271
.
13.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2001
, “
Collapse of Truss Core Sandwich Beams in 3-Point Bending
,”
Int. J. Solids Struct.
,
38
(
36
), pp.
6275
6305
.
14.
Rathbun
,
H. J.
,
Zok
,
F. W.
, and
Evans
,
A. G.
,
2005
, “
Strength Optimization of Metallic Sandwich Panels Subject to Bending
,”
Int. J. Solids Struct.
,
42
(
26
), pp.
6643
6661
.
15.
Valdevit
,
L.
,
Hutchinson
,
J. W.
, and
Evans
,
A. G.
,
2004
, “
Structurally Optimized Sandwich Panels With Prismatic Cores
,”
Int. J. Solids Struct.
,
41
(
18
), pp.
5105
5124
.
16.
Valdevit
,
L.
,
Wei
,
Z.
,
Mercer
,
C.
,
Zok
,
F. W.
, and
Evans
,
A. G.
,
2006
, “
Structural Performance of Near-Optimal Sandwich Panels With Corrugated Cores
,”
Int. J. Solids Struct.
,
43
(
16
), pp.
4888
4905
.
17.
Biagi
,
R.
,
Lim
,
J.
, and
Bart-Smith
,
H.
,
2011
, “
In-Plane Compression Response of Extruded Aluminum 6061-T6 Corrugated Core Sandwich Columns
,”
J. Am. Ceram. Soc.
,
94
(
S1
), pp.
76
84
.
18.
Côté
,
F.
,
Biagi
,
R.
,
Bart-Smith
,
H.
, and
Deshpande
,
V. S.
,
2007
, “
Structural Response of Pyramidal Core Sandwich Columns
,”
Int. J. Solids Struct.
,
44
(
10
), pp.
3533
3556
.
19.
Tilbrook
,
M. T.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2006
, “
The Impulsive Response of Sandwich Beams: Analytical and Numerical Investigation of Regimes of Behaviour
,”
J. Mech. Phys. Solids
,
54
(
11
), pp.
2242
2280
.
20.
Liang
,
Y.
,
Spuskanyuk
,
A.
,
Flores
,
S. E.
,
Hayhurst
,
D. R.
,
Hutchinson
,
J. W.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
,
2007
, “
The Response of Metallic Sandwich Panels to Water Blast
,”
ASME J. Appl. Mech.
,
74
(
1
), pp.
81
99
.
21.
Xue
,
Z.
, and
Hutchinson
,
J. W.
,
2003
, “
Preliminary Assessment of Sandwich Plates Subject to Blast Loads
,”
Int. J. Mech. Sci.
,
45
, pp.
687
705
.
22.
Xue
,
Z.
, and
Hutchinson
,
J. W.
,
2004
, “
A Comparative Study of Impulse-Resistant Metal Sandwich Plates
,”
Int. J. Impact Eng.
,
30
(
10
), pp.
1283
1305
.
23.
Mori
,
L. F.
,
Queheillalt
,
D. T.
,
Wadley
,
H. N. G.
, and
Espinosa
,
H. D.
,
2009
, “
Deformation and Failure Modes of I-Core Sandwich Structures Subjected to Underwater Impulsive Loads
,”
Exp. Mech.
,
49
(
2
), pp.
257
275
.
24.
Vaughn
,
D. G.
,
Canning
,
J. M.
, and
Hutchinson
,
J. W.
,
2005
, “
Coupled Plastic Wave Propagation and Column Buckling
,”
ASME J. Appl. Mech.
,
72
(
1
), pp.
139
146
.
25.
Tilbrook
,
M. T.
,
Radford
,
D. D.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2007
, “
Dynamic Crushing of Sandwich Panels With Prismatic Lattice Cores
,”
Int. J. Solids Struct.
,
44
(
18–19
), pp.
6101
6123
.
26.
Ferri
,
E.
,
Antinucci
,
E.
,
He
,
M. Y.
,
Hutchinson
,
J. W.
,
Zok
,
F. W.
, and
Evans
,
A. G.
,
2006
, “
Dynamic Buckling of Impulsively Loaded Prismatic Cores
,”
J. Mech. Mater. Struct.
,
1
(
8
), pp.
1345
1365
.
27.
Lim
,
J.
,
Kim
,
J.
,
Kim
,
J.
, and
Bart-Smith
,
H.
,
2015
, “
Dynamic Effects on the Lightweight Design of Metallic Core Sandwich Columns
,”
J. Mech. Sci. Technol.
,
29
(
4
), pp.
1335
1340
.
28.
Lim
,
J.
, and
Bart-Smith
,
H.
,
2014
, “
Theoretical Approach on the Dynamic Global Buckling Response of Metallic Corrugated Core Sandwich Columns
,”
Int. J. Nonlinear Mech.
,
65
, pp.
14
31
.
29.
Lim
,
J.
, and
Bart-Smith
,
H.
,
2015
, “
An Analytical Model for the Face Wrinkling Failure Prediction of Metallic Corrugated Core Sandwich Columns in Dynamic Compression
,”
Int. J. Mech. Sci.
,
92
, pp.
290
303
.
30.
Biagi
,
R.
,
2010
, “
The Mechanical Response of Corrugated Core Sandwich Columns
,” Ph.D. thesis, http://search.lib.virginia.edu/catalog/u5354455
31.
Budiansky
,
B.
,
1999
, “
On the Minimum Weights of Compression Structures
,”
Int. J. Solids Struct.
,
36
, pp.
3677
3708
.
32.
von Karman
,
T.
, and
Duwez
,
P.
,
1950
, “
The Propagation of Plastic Deformation in Solids
,”
J. Appl. Phys.
,
21
(
10
), pp.
987
994
.
33.
Taylor
,
G. I.
,
1958
, “
The Plastic Wave in a Wire Extended by an Impact Load
,”
Mechanics of Solids
,
G. K.
Batchelor
, ed.,
Cambridge University Press
,
Cambridge, UK
, pp.
467
479
.
34.
Garnet
,
H.
, and
Armen
,
H.
,
1975
, “
One Dimensional Elasto-Plastic Wave Interaction and Boundary Reflections
,”
Comput. Struct.
,
5
(
5–6
), pp.
327
334
.
35.
Timoshenko
,
S. P.
, and
Woinowski-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
, 2nd ed.,
McGraw-Hill Kogakusha
,
Tokyo, Japan
.
36.
Shames
, I
. H.
, and
Dym
,
C. L.
,
1985
,
Energy and Finite Element Methods in Structural Mechanics
,
Taylor and Francis
,
New York
.
37.
Bleich
,
F.
,
1952
,
Buckling Strength of Metal Structures
,
McGraw-Hill
,
New York
.
38.
Becque
,
J.
,
2010
, “
Inelastic Plate Buckling
,”
J. Eng. Mech.
,
136
(
9
), pp.
1123
1130
.
39.
Ros
,
M.
, and
Eichinger
,
A.
,
1932
, “
Final Report of the 1st Congress
,” International Association of Bridge and Structural Engineering, Paris, France, p. 144.
40.
Gerard
,
G.
,
1946
, “
Secant Modulus Method for Determining Plate Instability Above the Proportionality Limit
,”
J. Aeronaut. Sci.
,
13
(
1
), pp.
38
44
.
41.
Lee
,
H. P.
,
1995
, “
Effects of Initial Curvature on the Dynamic Stability of a Beam With Tip Mass Subjected to Axial Pulsating Loads
,”
Int. J. Solids Struct.
,
32
(
23
), pp.
3377
3392
.
42.
Lindberg
,
H. E.
, and
Florence
,
A. L.
,
1987
,
Dynamic Pulse Buckling: Theory and Experiment
,
Martinus Nijhoff
,
Norwell, MA
.
43.
Bazant
,
Z. P.
, and
Cedolin
,
L.
,
1991
,
Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories
,
Oxford University Press
,
New York
.
You do not currently have access to this content.