We have recently developed a novel numerical method for fluid–solid and fluid–membrane interaction problems. The method is based on a finite difference fractional step technique, corresponding to a standard numerical approach for simulating incompressible fluid flows, and applicable to treating nonlinear constitutive laws of solid/membrane and large deformations. The temporal change of the solid deformation is described in the Eulerian frame by updating the advection equations for a left Cauchy-Green deformation tensor, which is used to express the constitutive equations for materials and membranes. This method is reviewed in detail with some numerical results.
References
1.
Hirt
, C. W.
, Amsden
, A. A.
, and Cook
, J. L.
, 1974, “An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds
,” J. Comput. Phys.
, 14
, pp. 227
–253
.2.
Belytschko
, T.
, 1980, “Fluid-Structure Interaction
,” Comput. Struct.
, 12
, pp. 459
–469
.3.
Hughes
, T. J. R.
, Liu
, W. K.
, and Zimmermann
, T. K.
, 1981, “Lagrangian-Eulerian Finite Element Formulation for Incompressible Viscous Flows
,” Comput. Methods Appl. Mech. Eng.
, 29
, pp. 329
–349
.4.
Tezduyar
, T. E.
, Behr
, M.
, and Liou
, J.
, 1992, “A New Strategy for Finite Element Computations Involving Moving Boundaries and Interfaces—The Deforming-Spatial-Domain/Space-Time Procedure: I. The Concept and the Preliminary Numerical Tests
,” Comput. Methods Appl. Mech. Eng.
, 94
, pp. 339
–351
.5.
Tezduyar
, T. E.
, Behr
, M.
, Mittal
, S.
, and Liou
, J.
, 1992, “A New Strategy for Finite Element Computations Involving Moving Boundaries and Interfaces—The Deforming-Spatial-Domain/Space-Time Procedure: II. Computations of Free-Surface Flows, Two-Liquid Flows, and Flows With Drifting Cylinders
,” Comput. Methods Appl. Mech. Eng.
, 94
, pp. 353
–371
.6.
Tezduyar
, T. E.
, and Sathe
, S.
, 2007, “Modeling of Fluid-Structure Interactions With the Space-Time Finite Elements: Solution Techniques
,” Int. J. Numer. Methods Fluids
, 54
, pp. 855
–900
.7.
Takizawa
, K.
, and Tezduyar
, T. E.
, 2011, “Multiscale Space-Time Fluid–Structure Interaction Techniques
,” Comput. Mech.
, 48
(3
), pp. 247
–267
.8.
Hu
, H. H.
, 1996, “Direct Simulation of Flows of Solid-Liquid Mixtures
,” Int. J. Multiphase Flow
, 22
, pp. 335
–352
.9.
Johnson
, A. A.
, and Tezduyar
, T. E.
, 1996, “Simulation of Multiple Spheres Falling in a Liquid-Filled Tube
,” Comput. Methods Appl. Mech. Eng.
, 134
, pp. 351
–373
.10.
Johnson
, A. A.
, and Tezduyar
, T. E.
, 1997, “3D Simulation of Fluid-Particle Interactions With the Number of Particles Reaching 100
,” Comput. Methods Appl. Mech. Eng.
, 145
, pp. 301
–321
.11.
Johnson
, A. A.
, and Tezduyar
, T. E.
, 1999, “Advanced Mesh Generation and Update Methods for 3D Flow Simulations
,” Comput. Mech.
, 23
, pp. 130
–143
.12.
Gao
, T.
, and Hu
, H. H.
, 2009, “Deformation of Elastic Particles in Viscous Shear Flow
,” J. Comput. Phys.
, 228
, pp. 2132
–2151
.13.
Stein
, K.
, Benney
, R.
, Tezduyar
, T.
, and Potvin
, J.
, 2001, “Fluid-Structure Interactions of a Cross Parachute: Numerical Simulation
,” Comput. Methods Appl. Mech. Eng.
, 191
, pp. 673
–687
.14.
Torii
, R.
, Oshima
, M.
, Kobayashi
, T.
, Takagi
, K.
, and Tezduyar
, T. E.
, 2008, “Fluid-Structure Interaction Modeling of a Patient-Specific Cerebral Aneurysm: Influence of Structural Modeling
,” Comput. Mech.
, 43
, pp. 151
–159
.15.
Watanabe
, H.
, Sugiura
, S.
, Kafuku
, H.
, and Hisada
, T.
, 2004, “Multiphysics Simulation of Left Ventricular Filling Dynamics Using Fluid-Structure Interaction Finite Element Method
,” Biophys. J.
, 87
, pp. 2074
–2085
.16.
Peskin
, C. S.
, 1972, “Flow Patterns Around Heart Valves: A Numerical Method
,” J. Comput. Phys.
, 10
, pp. 252
–271
.17.
Glowinski
, R.
, Pan
, T.-W.
, Hesla
, T. I.
, and Joseph
, D. D.
, 1999, “A Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows
,” Int. J. Multiphase Flow
, 25
, pp. 755
–794
.18.
Yu
, Z.
, 2005, “A DLM/FD Method for Fluid/Flexible-Body Interactions
,” J. Comput. Phys.
, 207
, pp. 1
–27
.19.
Takagi
, S.
Oguz
, H. N.
, and Prosperetti
, A.
, 2003, “PHYSALIS: A New Method for Particle Simulation: Part II. Two-Dimensional Navier-Stokes Flow Around Cylinders
,” J. Comput. Phys.
, 187
, pp. 371
–390
.20.
Yuki
, Y.
, Takeuchi
, S.
, and Kajishima
, T.
, 2007, “Efficient Immersed Boundary Method for Strong Interaction Problem of Arbitrary Shape Object With Self-Induced Flow
,” J. Fluid Sci. Technol.
, 2
, pp. 1
–11
.21.
Mori
, Y.
, and Peskin
, C. S.
, 2008, “Implicit Second-Order Immersed Boundary Methods With Boundary Mass
,” Comput. Methods Appl. Mech. Eng.
, 197
, pp. 2049
–2067
.22.
Zhao
, H.
, Freund
, J. B.
, and Moser
, R. D.
, 2008, “A Fixed-Mesh Method for Incompressible Flow-Structure Systems With Finite Solid Deformation
,” J. Comput. Phys.
, 227
, pp. 3114
–3140
.23.
Eggleton
, C. D.
, and Popel
, A. S.
, 1998, “Large Deformation of Red Blood Cell Ghosts in a Simple Shear Flow
,” Phys. Fluids
, 10
, pp. 2182
–2189
.24.
Gong
, X.
, Sugiyama
, K.
, Takagi
, S.
, and Matsumoto
, S.
, 2009, “The Deformation Behavior of Multiple Red Blood Cells in a Capillary Vessel
,” J. Biomech. Eng.
, 131
, p. 074504
.25.
Huang
, H.
, Sugiyama
, K.
, and Takagi
, S.
, 2009, “An Immersed Boundary Method for Restricted Diffusion With Permeable Interfaces
,” J. Comput. Phys.
, 228
, pp. 5317
–5322
.26.
Zhang
, L.
, Gerstenbetger
, A.
, Wang
, X.
, and Liu
, W. K.
, 2004, “Immersed Finite Element Method
,” Comput. Methods Appl. Mech. Eng.
, 193
, pp. 2051
–2067
.27.
LeVeque
, R. J.
, and Li
, Z.
, 1994, “The Immersed Interface Method for Elliptic Equations With Discontinuous Coefficients and Singular Sources
,” SIAM J. Numer. Anal.
, 31
, pp. 1019
–1044
.28.
Li
, Z.
, and Lai
, M.-C.
, 2001, “The Immersed Interface Method for the Navier-Stokes Equations With Singular Forces
,” J. Comput. Phys.
, 171
, pp. 822
–842
.29.
Takeuchi
, S.
, Yuki
, Y.
, Ueyama
, A.
, and Kajishima
, T.
, 2010, “A Conservative Momentum Exchange Algorithm for Interaction Problem Between Fluid and Deformable Particles
,” Int. J. Numer. Methods Fluids
, 64
, pp. 1084
–1102
.30.
Xiao
, F.
, and Yabe
, T.
, 1999, “Computation of Complex Flows Containing Rheological Bodies
,” Comput. Fluid Dyn. J.
, 8
, pp. 43
–49
.31.
Udaykumar
, H. S.
, Tran
, L.
, Belk
, D. M.
, and Vanden
, K. J.
, 2003, “An Eulerian Method for Computation of Multimaterial Impact With ENO Shock-Capturing and Sharp Interfaces
,” J. Comput. Phys.
, 186
, pp. 136
–177
.32.
Okazawa
, S.
, Kashiyama
, K.
, and Kaneko
, Y.
, 2007, “Eulerian Formulation Using Stabilized Finite Element Method for Large Deformation Solid Dynamics
,” Int. J. Numer. Methods Eng.
, 72
, pp. 1544
–1559
.33.
Van Hoogstraten
, P. A. A.
, Slaats
, P. M. A.
, and Baaijens
, F. P. T.
, 1991, “A Eulerian Approach to the Finite Element Modelling of Neo-Hookean Rubber Material
,” Appl. Sci. Res.
, 48
, pp. 193
–210
.34.
Liu
, C.
, and Walkington
, N. J.
, 2001, “An Eulerian Description of Fluids Containing Visco-Elastic Particles
,” Arch. Ration. Mech. Anal.
, 159
, pp. 229
–252
.35.
Dunne
, T.
, 2006, “An Eulerian Approach to Fluid-Structure Interaction and Goal-Oriented Mesh Adaptation
,” Int. J. Numer. Methods Fluids
, 51
, pp. 1017
–1039
.36.
Cottet
, G.-H.
, Maitre
, E.
, and Milcent
, T.
, 2008, “Eulerian Formulation and Level Set Models for Incompressible Fluid-Structure Interaction
,” Math. Modell. Numer. Anal.
, 42
, pp. 471
–492
.37.
Sugiyama
, K.
, Ii
, S.
, Takeuchi
, S.
, Takagi
, S.
, and Matsumoto
, Y.
, 2010, “Full Eulerian Simulations of Biconcave Neo-Hookean Particles in a Poiseuille Flow
,” Comput. Mech.
, 46
, pp. 147
–157
.38.
Nagano
, N.
, Sugiyama
, K.
, Takeuchi
, S.
, Ii
, S.
, Takagi
, S.
, and Matsumoto
, Y.
, 2010, “Full Eulerian Finite-Difference Simulation of Fluid Flow in Hyperelastic Wavy Channel
,” J. Fluid Sci. Technol.
, 5
, pp. 475
–490
.39.
Sugiyama
, K.
, Ii
, S.
, Takeuchi
, S.
, Takagi
, S.
, and Matsumoto
, Y.
, 2011, “A Full Eulerian Finite Difference Approach for Solving Fluid-Structure Coupling Problems
,” J. Comput. Phys.
, 230
, pp. 596
–627
.40.
Ii
, S.
, Sugiyama
, K.
, Takeuchi
, S.
, Takagi
, S.
, and Matsumoto
, Y.
, 2011, “An Implicit Full Eulerian Method for the Fluid-Structure Interaction Problem
,” Int. J. Numer. Methods Fluids
, 65
, pp. 150
–165
.41.
Ii
, S.
, Gong
, X.
, Sugiyama
, K.
, Wu
, J.
, Huang
, H.
, and Takagi
, S.
, 2011, “A Full Eulerian Fluid-Membrane Coupling Method With a Smoothed Volume-of-Fluid Approach
,” Commun. Comput. Phys. (accepted).42.
Hirt
, C. W.
, and Nichols
, B. D.
, 1981, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,” J. Comput. Phys.
, 39
, pp. 201
–225
.43.
Bonet
, J.
, and Wood
, R. D.
, 2008, Nonlinear Continuum Mechanics for Finite Element Analysis
, 2nd ed., Cambridge University Press
, Cambridge
, Chap. 4.44.
Pozrikidis
, C.
, 2001, “Effect of Membrane Bending Stiffness on the Deformation of Capsules in Simple Shear Flow
,” J. Fluid Mech.
, 440
, pp. 269
–291
.45.
Skalak
, R.
, Tozeren
, A.
, Zarda
, R. P.
, and Chien
, S.
, 1973, “Strain Energy Function of Red Blood Cell Membranes
,” Biophys. J.
, 13
, pp. 245
–264
.46.
Barthés-Biesel
, D.
, and Rallison
, J. M.
, 1981, “The Time-Dependent Deformation of a Capsule Freely Suspended in a Linear Shear Flow
,” J. Fluid Mech.
, 113
, pp. 251
–267
.47.
Taylor
, G. I.
, 1934, “The Deformation of Emulsions in Definable Fields of Flows
,” Proc. R. Soc., London, Ser. A
, 146
, pp. 501
–523
.48.
Pozrikidis
, C.
, 1995, “Finite Deformation of Liquid Capsules Enclosed by Elastic Membranes in Simple Shear Flow
,” J. Fluid. Mech.
, 297
, pp. 123
–152
.Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.